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Enters: the Hochschild complex

Given a k-algebra A, we form its Hochschild complex

· · · A⊗ A⊗ A A⊗ A A 0.

The boundary maps bn : A⊗n+1 → A⊗n are obtained through an
alternating sum

∑
(−1)jdj , being each dj given by

dj(a0, a1, . . . , an) =

{
(a0, . . . , aj · aj+1, . . . , an) if j < n;

(an · a0, a1, . . . , an−1) if j = n.

The first character we will meet is the Hochschild homology of A,
obtained as the homology of the Hochschild complex and it is
denoted by HH•(A).
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The cyclic action

Observe the existence of an action of the cyclic group Cn on each
component of the Hochschild complex. Denote by t the generator
of the cyclic group Cn and we have

t(a0, . . . , an−1) = (an−1, a0, . . . , an−2).

This ”enriches” the Hochschild complex allowing for the definition
of the cyclic homology.
Classicaly, we first define the map N = 1− t + t2 − · · ·+ tn and
together with the morphism b′, which is the boundary of the bar
complex of A, we build the following bicomplex.
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The cyclic bicomplex and cyclic homology

...
...

...
...

· · · A⊗3 A⊗3 A⊗3 A⊗3 · · ·

· · · A⊗2 A⊗2 A⊗2 A⊗2 · · ·

· · · A⊗1 A A A · · ·

−b′

N

b

1−t

−b′

N

b

−b′

N

b

1−t

−b′

N

b

N 1−t N

The cyclic homology is then the total homology of this bicomplex.
This is a central character on our story, which we denote by
HC•(A).
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Delving into our cast I: the Hochschild homology

The Hochschild complex is actually a Moore complex. The di
maps we used to define the boundary operator turn the Hochschild
complex into a simplicial module. The hochschild complex is the
associated complex with this simplicial module under the Dold-Kan
correspondence.

Consequently, the geometric realization of this simplicial module
yields a space whose homotopy type represents the Hochschild
complex:

πn

(∣∣ · · · → A⊗ A⊗ A → A⊗ A → A
∣∣) ∼= HHn(A).
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Delving into our cast II: equivariance

Moreover, this simplicial module is a cyclic object, i.e. it has an
action of Cn in each component and these actions are compatible
with the face and degeneracy maps.

There are multiple senses in which the Cn actions are incarnations
of S1-homotopy theory. Maybe the simplest way to put that is that
the geometric realization of cyclic objects come with a canonical
action of the circle.
More sophisticated tools allow us to pin down how exactly this
action is ”responsible” for the existence of a cyclic homology.
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Moving to spectra

We start working now with ring spectra: that is, monoids on the
homotopy category of spectra Ho(Sp).

In more concrete terms:

1 Recall that a spectrum is a sequence of topological spaces Xn

with maps ΣXn → Xn+1;

2 maps of spectra are pointwise making the obvious squares
commute;

3 a ring spectrum is a spectrum X with a multiplication
X × X → X and unity S → X that make the usual monoid
diagrams hold up to homotopy;

To any ring R, we can associate its Eilenberg-Mac Lane spectrum
HR, which has components HRn = K (R, n). This construction is
functorial and embedds CRing into the category of S-algebras.
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The Hochschild spectrum

Given any commutative ring spectrum A, we can form its cyclic bar
complex, or better yet, the related simplicial ring spectrum

· · ·−→−→
−→ A ∧S A −→−→ A.

Taking the geometric realization gives a spectrum we call THH(A),
the Hochschild spectrum. For any commutative ring A, THH(A) is
defined as THH(HA), that is,

THH(A) :=
∣∣∣ · · ·−→−→

−→ HA ∧S HA −→−→ HA
∣∣∣.
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Leading character: topological Hochschild homology

So far, we straight up imitated Hochschild homology. But, instead
of ending up with a space, we got a spectrum. In the same vein the
Hochschild homology is represented by the mentioned space (via
its homotopy groups), we shall define the topological Hochschild
homology to be represented by the Hochschild spectrum.

In explicit terms, we define the n-th topological Hochschild
homology of a commutative ring A as

THHn(A) := πn(THH(A)).

Similarly as before, THH(A) also has a circle action, which we can
use to define topological cyclic homology, but we first need to
make sense of that statement.
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G -spectra

We now introduce the notion of a spectrum with a G action,
where G is a group.

We define a spectrum with a G-action to be a functor BG → Sp.
This is a more naive notion of equivariant spectra than the ones
people have been using in equivariant stable homotopy theory. In
fact, everything we are doing from now on was first figured out for
these more complicated notions.
In 2017, Thomas Nikolaus and Peter Scholze had the insight that
one can use this more relaxed notion of equivariant spectra
instead, provided you put it in the appropriated language.
Restating what we have commented earlier: THH(A) is a spectrum
with an S1-action.
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Homotopy fixed points and homotopy orbits

When a group G acts on a ring, we can look out for fixed points
and orbits. It is no different here, but we are dealing with
homotopy-sensitive algebraic objects, so we will account for that.

Given a spectrum with a G action X , we define the homotopy fixed
points of X to be

X hG = holimX

and the homotopy orbits as

XhG = hocolimX .
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The Tate construction

We apply a Tate construction to homotopy orbits and fixed points.
Recall that Tate cohomology can be defined as the cofiber of the
norm map from group homology to group cohomology.
Analogously, we define the Tate spectrum of X as the (homotopy)
cofiber

XhG → X hG → X tG .

We will be interested in the cases G = S1 or G = Cp. If one
mimics what we described here but swaping spectra for chain
complexes (or more precisely, the derived category of a ring), we
recove classical cyclic homology: HC(A) ∼= HH(A)hS1 , while
HH(A)hS

1
and HH(A)tS

1
correspond to negative and periodic

cyclic homology.
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The rise: cyclotomic spectra

Finally, we lay down the last structure we need to define
topological cyclic homology: cyclotomic spectra.

If X is a spectrum with an S1 action, it also has a Cp action
induced by the inclusion Cp ⊂ S1. Similarly, X tCp has an S1 action
as a residue of the quotient S1 ∼= S1/Cp.
Hence, it makes sense to define a cyclotomic spectrum as a
spectrum with an S1 action X together with S1-equivariant maps

ϕp : X → X tCp

for each prime number p.
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The twist: Topological cyclic homology

Now, we have two important maps from a cyclotomic spectrum X
to its Tate spectrum X tCp :

1 the canonical map can, given by the composition
X → XhCp → X hCp → X tCp ;

2 and the cyclotomic maps ϕp coming from the cyclotomic
structure on X .

We define the topological cyclic homology of a cyclotomic
spectrum X as the coequalizer

TC (X ) → X hS1

−→∏
p ϕp

can−→
∏
p

(X tCp)hS
1
.

THH(A) is always a cyclotomic spectrum.

For any ring A, we denote by TC(A) the spectrum TC(THH(A)).
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The resolution: cyclotomic trace

Recall that K -theory is represented by a spectrum: Kn(R) is
defined to be πn(K0 × B GL(R)+).

For ordinary Hochschild and cyclic homology, there is a trace map
K(A) → HH(A) that factors through HC−(A).
This map, called the trace map, is already pretty useful to study
K-theory:

under suitable conditions, we have an isomorphism between
rational relative K-theory and cyclic homology;

we can factorize classical Chern characters from K-theory;

it solves special cases of the idempotent conjecture;

it solves special cases of the Bass’ trace conjecture;

Now, lets move to our topological enrichment.
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it solves special cases of the idempotent conjecture;

it solves special cases of the Bass’ trace conjecture;

Now, lets move to our topological enrichment.
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From K-theory to topological cyclic homology

As before, we have some kind of trace map from K(A) to TC(A),
called the cyclotomic trace.

An analogue result relating p-adic relative K-theory and
relative topological cyclic homology;

It induces isomorphisms from (relative) K-theory (with Z/p
coefficients) to TC (kinda);

topological Hochschild homology coincides with stable
K-theory;

applications for assembly maps;
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Some concrete results

We now know much more about the K-theory of stuff.

K2n−1(k[CpN ];Zp) ∼= K1(k[CpN ];Zp)
⊕n and

K2n(k[CpN ];Zp) = 0 for k of characteristics p;

K2m−1(k[x ]/(x
n);Zp) = Wnm−1(k)/VnWm−1(k) for k perfect

of characteristic p, where W (k) is the Witt ring and
Vn(f (x)) = f (xn);

extending the result above, we also know the K-theory of
truncated polynomial algebras [Angeltveit, Gerhardt, Hill,
Lindenstrauss].
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What is the point?

All these results were shown using the machinery of topological
Hochschild and cyclic homology.

The upshot is that TC and THH are MUCH MUCH more easy to
compute than K-theory. There are lots of spectral sequences
available (K-theory is not so generous).
There are other uses of TC and THH in algebra besides K-theory.
For instance, we have the work of Bhatt, Morrow and Scholze in
p-adic cohomology.
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