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Introduction

The Suspension Theorem due to Freudenthal gave birth to stable homotopy
theory. Mathematicians were originally interested on how topological spaces
behaved when iterating the suspension functor. The idea of spectra appeared
to study in more details the Spanier-Whitehead duality. While trying to under-
stand stability properties of the suspension functor, it became more and more
evident that looking at some object that contained all the data of successive
iterations of the suspension functor could be a good idea.

Thereof was born the concept of spectra, a sequence of topological spaces
with maps connecting the suspension of the last to the next one. Quickly after
the debut of spectra, notions of their stable homotopy groups were thrown
around and some form of homotopy theory for spectra was born. The thoughts
of doing homotopy theory with things that are not topological spaces really got
into the spotlight after Quillen’s model categories arrived in this world. After
that, mathematicians quickly layed down the fundamentals of the homotopy
theory of spectra in terms of this new language that model categories provided.

Meanwhile, the study of ”homotopy coherent algebra” was full steam and
many ideas of how to formalize such a thing started popping up. Between these
many proposals of what should be the definition of certain homotopy coherent
algebraic objects (most latter found to be loosely equivalent), Segal’s I'-spaces
received some attention, in particular by Bousfield and Friedlander. In their 78
paper [BF78|, trying to build a model structure for I'-spaces, they described one
of the earliest examples of Bousfield localizations (didn’t have this name yet) in
order to explain how one of the model structures for spectra could be used to
create another one, which at some point was understood to be the right. One
year later, Bousfield published a paper showing a more systematic way to do a
very similar procedure, which originated the term Bousfield Localization.

After these years of development, we had these two model structures describ-
ing two different homotopy theories of spectra: the strict model structure for
spectra and the stable model structure for spectra. While the strict model was
based on a perspective of spectra merely as sequences of spaces with some extra
structure (so one could try some componentwise approach), the stable model



structure tried to grasp some behaviors observed in the realm of spectra strongly
related to the stability properties of the suspension functor, the fundamental
tool for defining spectra. More than simply the existence of two different model
structures for spectra, the stable one could be obtained by Bousfield Localizing
the strict one.

Later on, more progress was made in different directions. In special, we
may cite the recognition of spectra as some kind of diagram in the category of
topological spaces. This allowed mathematicians to use some tropes from the
theory of model categories to construct the strict model structure on spectra.
Advancements in the theory of model categories with extra structure also gave us
the blessing of stable model categories and the stabilization of model structures,
which when applied to the strict model structure on spectra, results in the stable
one.

Furthermore, the hunt for a nice category of spectra ended up bringing a lot
of different special types of spectra. In order to make the category of spectra a
symmetric monoidal one or even closed monoidal and transfer these structures
to the relevant model structures, things like symmetric, orthogonal spectra and
similar new flavors of spectra needed to be introduced.

This is an exposition on the two main different model structures in the
category of spectra: the strict and the stable one. We will discuss what they
are and how they are related. The first section is designed for either the reader
who needs a little reminder on the very foundational aspects of stable homotopy
theory or the ones who are not familiar with the subject and want to see some
cool examples of homotopy theories.

The second section describes the strict model structure on the category
of spectra. We work on some details about cofibrant replacement and CW-
approximation for this model structure. We take a different approach than that
taken by Bousfield and Friedlander in [BF78], for example. They work with the
corresponding notion of spectrum in the category of simplicial sets. We pre-
fer to stick directly with the topological incarnation as the classical homotopy
theoretical results and concepts we will use are in general better disseminated.

Third section concerns Bousfield localization of model categories. There are
many possible takes one can have about Bousfield localizations, varying in level
of technicality. Perhaps the most useful one is via local weak equivalences,
but we definitely don’t need to engage with the technicalities inherited by such
approach. So we opt for a much easier-to-digest definition with the downside
that it forces one to work more to obtain precise clarifying information about
the things we are working with. In practice, they are equivalent.

The last section introduces the stable model category of spectra. It uses some
results explained in the last section to clarify the process of ”stabilization” (we
don’t actually define what stabilization is) of the strict model structure from
the second section. We point out some basic features of this model structure
and finish with some comments about stable model categories, from which the
stable model category of spectra is a prototypical example, and how all of this
relates to the more contemporary point of view regarding homotopy coherent
mathematics.



1 Preliminars on spectra

This section is dedicated to reviewing the fundamental notions we will be work-
ing with. If the reader is familiar with the concept of spectra and the basic
constructions associated with it, this may be skipped without any loss.

The idea of spectra is to organize a list of topological spaces in a sequence
where the next space is connected to the suspension of the previous. One may
wonder why are spectra even a thing, that is, why people care to define such
kind of object. There are many reasons for mathematicians to pay attention to
them. A first reason may be the fact that they rise naturally when considering
homotopy groups of subsequent suspensions of spaces.

Maybe an even better reason is that spectra are naturally related to cohomol-
ogy theories. For instance, spectra represent generalized cohomology theories, in
the sense that every generalized cohomology theory has an associated spectrum
that allows computing the cohomology of a space via maps into such spectrum.

First of all, we need to define what is the suspension of a space. We will
work with pointed spaces, so our definitions will be ”pointed-sensible”. The
idea of the suspension is to build a new topological space XX from an old one
X by attaching two ”cones” from above and below X.

Definition 1 (Reduced suspension). The reduced suspension XX of a pointed
topological space (X, ) is the space
X x [0,1]
(X < {1 U (X x {0} U ({+} x [0, 1]

The picture to have in mind is that XX is built by stacking many copies of
X, forming a cylinder X x [0, 1] with base X and then collapsing the ends. In
addition, each copy of X used in the cylinder has a distinguished point given
by the basepoint of X. If one marks all such distinguished points (x, t) for each
t € [0, 1], the result will be a line crossing the cylinder from one end to another.
We also collapse this whole line, pulling the two collapsed ends of the cylinder
to the same point. Then, this point is taken to be the base point of X.X.

Moreover, if f : (X,z9) — (Y,yo) is a map of pointed topological spaces,
we can build a map between the suspensions X f : ¥X — XY by sending the
equivalence class of (z,t) to (f(x),t), so we just apply f in each level of the
cylinder. One can quickly check this map is well-defined. Furthermore, it is
straightforward to verify the relations X(f o g) = £f o Xg and Yidx = idgx.
Hence, ¥ forms a functor % : Top, — Top, from the category of pointed
topological spaces to itself.

There is another way to describe the suspension functor, which is via another
operation called smash product. The coproduct in the category Top, of pointed
topological spaces is the wedge sum, defined below.

Definition 2 (Wedge sum). The wedge sum of two pointed topological spaces
(X, x0) and (Y,yo) is defined to be the space X VY given by
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Which is pointed by the equivalence class [xo] = [yo].

This construction basically takes two spaces and glues them along the base-
points. It defines a bifunctor as two maps f : X — Y and g : X’ — Y” induce a
map fVg: XVX' — Y VY’ that receives a point in X V X', choose the function
which is defined in the corresponding component of the wedge sum (that is, X
or X’) and maps the point to Y VYY" using such function. We finally have the
smash product.

Definition 3 (Smash product). Let (X, o) and (Y,yo) be two pointed topolog-
ical spaces. We define the smash product X \'Y to be the space

XxY
(X x{yo}) U ({mo} xY)
pointed by the point corresponding to the collapsed subspace.

Notice that the subspace we quotient by in the smash product is homeomor-
phic to a wedge sum X VY, so we could write X AY = X xY/X VY with the
proper identification.

Again, A defines a bifunctor in Top,. If we fix one of the inputs to be S*, we
obtain a functor S* A (=) : Top, — Top, which coincides with the suspension
functor ¥ we defined previously. This description is interesting because A acts
like a tensor product in pointed spaces. More precisely, A turns the category of
compactly generated pointed spaces into a closed symmetric monoidal category.
In this situation, currying gives an isomorphism

Map(X AY, Z) = Map(X, Map(Y, Z))

By setting Y = S, we recover a version of the loop space-suspension adjunc-
tion. Another possible statement of, essentially, the same result is the following.

Theorem 4. For any pointed spaces X,Y , there is a bijection

[BX,Y] 2 [X, QY]

between homotopy classes of maps from X toY and homotopy classes of
maps from X to the loop space of Y.

The mentioned bijection is given by associating a function f : XX — Y to
the function h(z) = f(z,—). For a fixed z, the function f(z,—) indeed defines
a loop as f is a function over the suspension of X and the points (x,t) € ¥ with
t=0ort=1 are identified.

Now, we finally define what a spectrum is.



Definition 5 (Spectrum). A spectrum is a sequence (X, )nen of pointed topo-
logical spaces and pointed maps XX, — Xpt1-

Example 1 (Eilenberg-MacLane spectrum). Given an abelian group G and a
natural number n, one can form the space K(G,n), which is a CW complex
characterized by the property that

G oifi—
m(K(Gm)) = O F =
0 otherwise.
There is a homotopy equivalence between wK (G,n+1) and K(G,n), yielding,
via the loop space-suspension adjunction, a map XK (G,n) — K(G,n + 1) that
turns the sequence of spaces K(G,n) into a spectrum.

This spectrum 1is called the FEilenberg-Maclane spectrum of G and is
denoted by HG.

Example 2 (Sphere spectrum). Computations show that £S™ is homeomorphic
to S"t1, so we have a spectrum S, called the sphere spectrum whose n-th
element is the sphere S™. The maps in this spectrum are the homeomorphisms
ron =2 gntl,

Example 3 (Suspension spectrum of a space). Given a space X, it is possible
to form the suspension spectrum of X, denoted by ¥°° X, whose n-th element
is X" X, the space obtained by applying the suspension functor n times to X.
The maps of this spectrum are the identity maps.

With the terminology above, the sphere spectrum can be identified with the
suspension spectrum of the two-point space S°. To do this properly, we need to
understand what a map of spectra is.

Definition 6. A map between spectra f : X = (X,)), =Y = (Yo,)n is a
sequence of pointed maps f, : X,, — Y, making the following diagram commute

nX, I yy,

l l

fnt1
XnJrl — Yn+1

The vertical maps are the structure maps of the spectra.

Then, an isomorphism is a morphism of spectra which is a homeomorphism
levelwise.

Our final goal is to describe the homotopy theory of spectra in terms of
model categories. Knowing what kind of thing we are trying to describe in
terms of model categories certainly will help, so we finish this preliminary sec-
tion by describing very grounded versions of homotopy groups of spectra and
homotopies between maps of spectra.

First of all, notice that there is a canonical map 7 (X,) — 7rr1(Xni1)
for all k,n. As mp(X,,) = [S*, X,.], applying ¥ to each map S* — X, yields
a map [XS* ¥X,] = [S¥*1,2X,,], which further maps to [S**1 X X,,] via the



structure map of X. We used that ¥ preserves homotopy classes. Thus, the
following definition makes sense.

Definition 7 (Homotopy groups of spectra). Given a spectrum X, its k-th
homotopy group is defined to be the colimit

colim(- -+ = Tpyn(Xpn) = Tognt1(Xng1) = -+ -).

As for topological spaces, maps X — Y between spectra induce maps in
its homotopy groups, obtained as the colimit of the induced maps in the topo-
logical spaces defining X and Y. One can expect already a definition of weak-
equivalence of spectra as a map that induces isomorphisms in all homotopy
groups of spectra.

Constructions from topological spaces can be extended to spectra. For exam-
ple, we can define the wedge sum of a pointed topological space with a spectrum,
and also a smash product. These are done componentwise and, being bifunc-
tors, we have induced maps between the new spaces, also defining a spectrum.
Notice that, with this language, the suspension spectrum of X is precisely X AS,
the smash of X with the sphere spectrum.

As a consequence, there are functors X,Q2 : Sp — Sp from the category
of spectra to itself given by applying the suspension and loop space functor
componentwise. These are also adjoints.

2 The strict homotopy theory of spectra

Spectra are just sequences of topological spaces. It is true that they have a
bit more structure than any sequence, but they are still sequences, just special
ones. As such, we can approach a homotopy theory for spectra in a very naive
way, doing everything componentwise. To formalize this idea in terms of model
structures, we first need a category. Luckily, we already have everything for
that. We let Sp be the category of spectra, whose objects are, well... Spectra,
and morphisms are maps of spectra, as in Definition [} This is the first step
towards a homotopy theory of spectra. The next ones are a bit more involving.

2.1 Defining the strict model structure

We said we were going to do everything componentwise. What it means is that
our special classes of morphisms for our model category of spectra (weak equiv-
alences, fibrations and cofibrations) will be defined componentwise, as follows.

Definition 8. A map of spectra f: X =Y is said to be

1. a weak equivalence if each f, : X,, — Y, is a weak equivalence in the
Quillen model structure for topological spaces;

2. fibration if each f, : X,, = Y, is a fibration in the Quillen model struc-
ture for topological spaces;



3. cofibration if it has the left lifting property with respect to trivial cofibra-
tions.

It is hinted already by the choice of names that these classes of maps will
turn Sp into a model category, which we call the strict model structure on
spectra. While this is the case, this is not the "right” model category, since it
doesn’t account for stability phenomena observed in spectra, as we will explain
later. But we can build the right model structure from this one.

Showing that this actually gives a model structure is not that simple. (Co)completeness
of Sp and the 2-out-of-3 property are fairly easy, as well as closure under re-
tracts. But lifting properties and factorizations, although happening compo-
nentwise, have no apparent reason for defining maps of spectra. We need to do
a small detour.

The more experienced reader may have noticed the similarity of the way
we defined our distinguished classes of morphisms with the way one defines
these classes for other situations. This ”componentwise” idea is recurrent in
many situations and the model structure is reminiscent of model structures in
diagram categories.

In our case, we can look at model structures in categories of functors. The
two main ones are the projective and injective model structures. We can see
how spectra look like functors from, let us say, a category of natural numbers
to pointed topological spaces. But they have a small twist arising from the
structure maps, so this perspective is not quite right. But we can make it work
if we put some effort into changing the way we see spectra as functors. The
claim is that Sp is equivalent to a functor category. Which functor category?

Definition 9. We denote by Spheres the category whose objects are the spheres
S™ and hom sets are given by

Hom(S™, §7+*) — {* for k < 0;

Sk otherwise.

The functor category Fun(Spheres, Top, ) is equivalent Sp. The equiva-
lence takes a functor F' : Spheres — Top, and builds the spectrum whose
n-th component is F(S™). The structure maps are declared using the loop
space-suspension adjunction and the composition in Spheres, which we did
not describe as we don’t want to dive any deeper into the technicalities of these
constructions. The upshot is that we can consider the projective model structure
on Fun(Spheres, Top, ), whose existence is guaranteed by the Top-enrichment
of Spheres.

Now, we can transfer this model structure to Sp via the said equivalence.
The result is what we declared as weak equivalences, fibrations and cofibrations
before.

Another approach is to look at the category of spectra as a diagram category
[Man+01], we end up with a fairly concrete description of the cofibrations (see
framing in [Hov]):

A map f: X — Y is a cofibration if fy : Xg — Yj is a cofibration and all
pushforward maps



Xnt1Usx, XY, = Yo

are also cofibrations.

Then we have some interesting facts about this model structure. The sus-
pension spectrum construction defines a functor 3*° : Top, — Sp and, as we
now show, this functor has a right adjoint £2°°.

Definition 10. We define the functor Q°° : Sp — Top, by Q>°(X) = X, that
18, it picks the 0-th component.

Theorem 11. There is an adjunction 3°° 4 Q.

Proof. Given a spectrum X and Y a topological space, then Hom(X>°Y, X) is
the set of sequences f,, : X"Y — X, such that the diagrams

syn-ly 2t sy

i |

sny I L wx,
commute. Suppose f, is already given. Then, since the arrow X" 1Y —
3™Y is an isomorphism, there is only one possible f, 11 making the diagram
commute, which is given by composing all the inverse of the isomorphism with
the other maps. Hence, all morphisms in Hom(X*°Y, X) are determined by
fo:Y = Xjy. Recalling that Xg = Q°° X, we can see the bijection.

Hom (XY, X)) 2 Hom(Y, 2> X)
O

What is interesting is that this adjunction is a Quillen adjunction between
the strict model structure on Sp and the Quillen model structure on Top,.. The
proof of this fact is as simple as observing that whenever we have a morphism
of spectra f : X — Y and we apply Q2°°, we end up with the morphism fj :
Xo — Yy and the definition of the strict model structure implies that whenever
f + X = Y is a weak equivalence (resp. fibration or cofibration), so does
fo : Xo— Y.

Proposition 12. The adjoint functors ¥ : Sp < Sp : Q form a Quillen ad-
Junction.

Proof. Tt follows from the fact that 3 : Top, <> Top, : (1 is a Quillen adjunction
and the model structure in spectra is componentwise. O



2.2 Cofibrant objects in the strict model structure

We have done a bunch of stuff already with the strict model structure on spectra
and we know things tend to happen componentwise. So we could expect fibrant
and cofibrant replacements to also be done componentwise. Let us see how it
goes.

We will ignore fibrant objects for the time, since they will drastically change
later when we localize the strict model structure. First, the initial object in
Sp is the spectrum whose n-th component is a point % for all n. Then, for
X € Sp cofibrant, we need * — X to be a cofibration, which means * — X is
a cofibration. So our first requirement is that Xy must be a cofibrant object in
the Quillen model structure, so a retract of a cell complex.

Also, X(*) = by a quick calculation. Hence, the pushforward * Ls,) £X,
is simply ¥£.X,,. So we need the structure map X, — X, 1 to be a cofibration.

This way, we obtain the following theorem

Theorem 13. A spectrum X is cofibrant in the strict model structure of Sp if
and only if Xg is cofibrant and the structure maps ©X,, — X,, 11 are cofibrations.

We also have a ”CW approximation” for spectra, which serves as a form of
cofibrant replacement This CW approximation is by CW-spectra, whose defini-
tion is the following.

Definition 14 (CW-spectrum). A CW-spectrum is a spectrum X such that
each X, is a CW-complex and the structure maps XX, — X1 are all celular
inclusions.

Theorem 15. Let X € Sp be a spectrum. Then there is some strict weak
equivalence X — X from a CW-spectrum X to X.

Proof. By usual CW-approximation, we have a weak equivalence Xy — X, in
the 0-th component. Now we build the next maps inductively.

Suppose we have a sequence of weak equivalences fy, : X — Xj forall k < n
such that the ”structure diagrams” commute, that is, the diagrams

vX, P wx,

|

~ frt1
Xpt1 — Xkt

commute for all k < n. R
Then, the upper path of such diagram when k = n provides a map > X,, —
Xp+1. CW approximation for this map gives a factorization

ZXn Xn+1

~ 7

Yn+1



where Y, 11 ig a CW-complex and the map Y, 11 — X,, 41 is a weak equiva-
lence. We set X;, 11 = Y, 41 and this map the compatibility with the structure
maps of X is a mere consequence of the commutativity of the last diagram. [

Hence, after this bit of work, we know that there is a kind of cofibrant
replacement in Sp that works just as CW approximation does in Top.

3 Bousfield localizations

In this section we will discuss Bousfield localizations, which is a type of lo-
calization we will use to ”stabilize” our model structure on Sp. The general
philosophy of a Bousfield localization is to mimic what one does when localizing
ordinary categories at a class of morphisms, but in a homotopy coherent way.
So we consider the same kind of diagram and final/cofinal problem we would
when defining the localization of a category, but using Quillen functors instead
of any functor.

A more pragmatic perspective is that of a solution to the problem of modify-
ing a model structure in a controlled way. The ”operation” of Bousfield localiz-
ing takes a model structure on a category and returns another model structure
that has either the same set of fibrations or the same set of cofibrations, but
in any case the number of weak equivalences should increase. Why would one
want to do such a thing?

That is a valid question. Possible answers include: I want to make more
things weak-equivalent. Or I want to shorten my set of fibrant or cofibrant
objects. A further question that may appear is why are these answers good an-
swers? For that question, one answer, perhaps not uniquely, is because some-
times we would love homotopy types to be stable under some kind of operation
or maybe the interesting (co)fibrant objects are a subclass of the actual ones.
To really appreciate these ideas, one would need to be exposed to some situa-
tions where these thoughts are the ones driving mathematicians to do certain
things. Good examples include A! homotopy theory, where Bousfield localiza-
tions appear to "make the affine line contractible” or in our case, nice spectra
are ones in which the structure maps are weak equivalences. These are called
Q-spectra. Between the reasons why they are the interesting spectra, we have
Brown’s representability associating an Q-spectrum to each cohomology theory
and also, a more sophisticated reason is that Q-spectra are the ”actual spectra”
in the category of spectra.

In short terms, every model category can be turned into a stable model cate-
gory via the stabilization construction. The stabilization of a model category is
naturally identified with the category of spectrum objects in the model category.
The catch here is that spectrum objects are defined in the way they need to be
so that the category of such objects is the stabilization of the model category.
It turns out that the spectrum objects in the category of spectra are not all
spectra, but the omega ones. We didn’t discuss stable categories yet so this

10



reasoning may feel a bit out of reach by now. But perhaps this foreshadowing
of theory can help to motivate caring about 2-spectra so much.

Definition 16 (Bousfield localization). Let C be a model category with weak
equivalences W and cofibrations C. A Bousfield localization of C is a model
category Cj,e. with the same underlying category and same cofibrations but its
class of weak equivalences Wi, contains W.

This is a pretty general definition of Bousfield localization. There are many
ways to build Bousfield localizations for model categories. We are going to focus
on the procedure that uses idemponent functors to do so, as our ”intended”
fibrant replacement functor will be one.

Theorem 17. Hypothesis: Let Q : C — C be an endofunctor in a model
category C and n :id — @ a natural transformation satisfying:

1. Q preserves weak equivalences (also known as a homotopical functor);
2. for all X € C, Q(nx) and ng(x) are weak equivalences;
8. if in a pullback square

P— X

I

y —h, 7

f is a fibration and the morphisms nx,ny are weak equivalences, then
Q(P — X) is also a weak equivalence.

Consequence: The following classes determine a model structure in the
underlying category C:

o weak equivalences: maps | such that Q(f) is a weak equivalence;
e cofibrations: maps that are a cofibration (they are the same);

e fibrations: maps having the right lifting property with respect to the trivial
cofibrations as above.

These are called Q-weak equivalences and Q- (co)fibrations.

This is a theorem due to Bousfield and Friedlander and the proof is a bit
long, so we are going to skip it.

The important thing is that now we have a more or less algorithmic way to
obtain more model structures in the same category. It may be at least inter-
esting to see that these new model structures obtained this way are Bousfield
localizations of the original one.

First of all, it should be clear that the class of weak equivalences increases.
If f is a weak equivalence, then Q(f) is also a weak equivalence as ) preserves
this class of map. Then, since Q(f) is a weak equivalence, f is, by definition, a
Q-weak equivalence as well. Furthermore, the class of cofibrations is the same
so, indeed, we obtain a Bousfield localization.

11



4 The stable homotopy theory of spectra

We will now Bousfield localize the strict model structure of spectra to obtain a
model structure that is sensible to stabilization phenomena in spectra. What
kind of phenomena are we talking about?

The most basic form may be the existence of stable homotopy groups. Spec-
tra have homotopy groups, defined as certain colimits (see Deﬁnition and that
suggests the existence of a homotopy type based in these homotopy groups. But
our current weak equivalences do not account for this kind of homotopy type,
as they do not consider what happens in the colimit of the homotopy groups.

A hint about how to solve this problem comes from looking at the cases in
which the sequence of homotopy groups stabilizes, so isomorphisms in each level
will yield an isomorphism in the colimit as the sequence is constant.

In more details, let us say we have a map between spectra f : X — Y and
we are looking at the induced map in the sequence of homotopy groups used in
the colimit that computes m(X) and m(Y).

N 7Tk+n(Xn) — 7Tk+n+1(Xn+1) —_—

l(fn* l(fnm*

c— Togn(Yn) — Togng1 (Y1) —— -

Let us say the (f,)* maps are isomorphisms. How can we guarantee that
the induced map on the colimit will be an isomorphism? Well... It happens
if the sequence actually stabilizes, that is, becomes constant after a while. So
we may now require isomorphisms 7y, (Xpn) = Ty ny1(Xnq1). Thankfully, the
loop space-suspension adjunction gives isomorphisms 7 (X) & 7,_1(22X), so
the answers lies in ()-spectra, as these are the ones whose sequence of homotopy
groups become constant (maybe up to a shift on degree, and then we would
expect X and 2 to induce equivalences on the homotopy category of Sp with
this new model structure).

This is one of the motivations for us to go out in the woods and hunt for a
funtor @) that turns spectra into Q2-spectra, which we would like to behave as
some kind of fibrant replacement.

Definition 18 (Spectrification). We define a functor Q, called spectrification
by the following construction.

e Start with a spectrum X and set Z§ = Xy;

e we are going to define a sequence (ZF)ien and maps ZF — QZfJr1 for
each k inductively;

o assume we did for all i < n;
e take the map ZF — Zf‘H and factors it as a cofibration followed by a weak

equivalence Zf —Y — QZfH;
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o define ZF  =Y;
e do that for all k;

e the map Zik+1 — Qfoll s given by applying 2 to the fibration Zf“ —
Zik_fll and composing the result with the weak equivalence ZF, ; — QzF L,
e then the spectrum Q(X) has k-th component (QX ), = colim; ZF.

We didn’t say anything about the structure maps of the spectrum QX above
due to laziness. But in short terms, one can draw a diagram with upper row
being the sequence (Z));en and the bottom row being Q(ZF™),cy. The colimit

then gives the structure maps. We should at least verify that the functor @ has
Q-spectra as output.

Proposition 19. For any spectrum X, Q(X) is a Q-spectrum.

Proof. The first thing we need is to realize that part of the construction of
Q(X) is cofibrant replacing X. If one analyzes the inductive construction of
Q(X), it is possible to see how it is exactly taking a colimit while doing a
CW-approximation of X as in Theorem [I5]

So we can assume X is a CW-spectrum and then Q(X)x = colim; V' Xy
and since S! is compact, Q(Q(X)) = Map(S!, Q(X)) = Map(S?, colim; Q' X ;) =
colim; Map(St, Q' Xj1;) = colim; Q(Xk1s) = Q(Q(X)). O

There is also a natural transformation 7 : idgp = @ where nx : X — QX in
the level k is the map given by the universal property of the colimit. Remember
that X = Z¥ and (QX)y, is the colimit of ZF — Z¥ — ... The claim is that
nx : X — QX induces isomorphisms on homotopy groups of spectra.

Lemma 20. The morphism nx : X — QX induces isomorphisms m(X) —
7k (QX) in the (stable) homotopy groups of spectra.

Proof. The induced map n% in the k-th homotopy groups is the colimit of
applied to the sequences Z0 — QZ! | — . — Q"ZI = Q" X,, where each map is
the weak equivalence in the factorization of Zf — QZZ-j *1 provided by the model
structure, as discussed in Definition (the definition of the spectrification
functor).

Then, the loop space-suspension adjunction provides

colimy 744 (X;) 2 colim, mp, (Q°X;)

while the mentioned chain of weak equivalences provides the isomorphisms
in 7, between 74 (Q°X;) and m1,(Z). At the same time, the compactness of S*
ensures that

colim; 7y, (Z?) 2 7, (colim; ZY) = m1.((QX)o)

13



There are some details we are skipping because they fall heavily on the
technical side. If we gather everything we did and blackbox some lemmas, we
arrive at the following theorem.

Theorem 21. The pair (Q,n) given by the spectrification functor and the nat-
ural transformation n : id = Q satisfies the conditions of Theorem 17

The model structure arising from this theorem is called the stable model
structure of spectra and it has the following properties

e weak equivalences are maps inducing isomorphisms on homotopy groups
of spectra (these are called stable weak equivalences);

e fibrant objects are Q)-spectra;
e cofibrant objects are among the ones for the strict model structure;

e in particular, fibrant-cofibrant objects are CW spectra that are also -
spectra.

Whitehead’s theorem implies, in particular, that stable and strict weak
equivalences agree for CW-spectra that are also 2-spectra. In reality, some-
thing stronger holds, one only needs the spectra in question to be (2-spectra.

The situation here mirrors in many ways the relation between the Quillen and
the Strom model structures for topological spaces. We have some preliminary
notion of weak equivalence that is too strong and the more modest one coming
from isomorphisms in the homotopy groups. Also, in the same way we have
reasons to prefer the Quillen model structure over Strom’s one, we favour the
stable model structure over the strict one.

Some reasons for that were already pointed. For example, the fact that Q-
spectra are more interesting than ordinary ones (e.g., they appear in Brown’s
representability and they are the spectrum objects in the category of spectra).
But there is another reason we will briefly discuss now. The adjunction in
Proposition [12|is upgraded to a Quillen equivalence when we change the model
structure from the strict to the stable one.

Why would that be a big deal? Because this is the required condition for a
model category to become a stable model category. A stable model category
is one where we have things like suspensions and loop spaces and they define
equivalences in the homotopy category. The precise notions of suspension and
loop space are as follows.

Definition 22 (Suspension object). Given a model category C and an object
X € C, the suspension object of X is the homotopy pushout

X —— x

o

¥ — 32X
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Definition 23 (Loop space object). Given a model category C and an object
X €, the loop space object of X is the homotopy pullback
QX ——

L

These constructions of suspension objects and loop space objects define end-
ofunctors in the relevant model category.

—

Definition 24 (Stable model category). A pointed model category C is called
stable if the derived suspension and loop space object functors

Y : Ho(Sp) < Ho(Sp) :
are inverses of each other.

The story goes that the functors ¥ and 2 realize Sp as a stable model
category.

Theorem 25. There is a Quillen equivalence

X:Sp=Sp: N
when Sp is equipped with the stable model structure.

The point is that the suspension and loop space objects coincide with our old
suspension and loop space functors in spectra. The fact that the stable model
structure is a stable model category is very useful. For instance, the homotopy
category receives a triangulated category structure. That allows for one to talk
about exact sequences of spectra in a very natural way and, hence, of exact
functors.

One more important fact is that stable model categories are, as one would
expect, the model categories incarnating stable (oo, 1)-categories. In particular,
the stable model category of spectra is a way of presenting the stable co-category
of spectra. In reality, the notation Sp usually is used for this co-category. There
is a crucial factor here pushing us to work with the oo-categorical language,
which is the naturality and simplicity in putting some extra structure on the
involved categories. For example, trying to come up with a definition of G-
equivariant spectrum is a complicated work. Indeed, there is a bunch of (non-
equivalent) definitions. Although people usually stick with genuine G-spectra
when doing things equivariantly, it is, in many cases possible to obtain the
same results using only the weaker notion of spectrum with a G action, which
is merely a functor between the infinity categories BG and Sp.
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