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Introduction

Every model category gives rise to an ∞-category that describes the same ho-
motopy theory. These notes aim to explain how one can start with a model
category and arrive at such ∞-category. This process is made in three steps,
each being done by applying a functor.

In synthesis, we have three functors

RelCat CatsSet CatsSet sSetLH RB Nhc

whose composition has ∞-categories as output.
Before properly starting to talk about these three constructions, we refresh

some central notions we will be using, like model and infinity categories.
We proceed to construct, after the refresher, the hammock localization LH ,

which gives us a way to arrive at a simplicially enriched category, already a nice
way to store homotopical data.

Subsequentially, we talk about a form of fibrant replacement in the category
of simplicially enriched categories. This fibrant replacement, denoted by RB ,
will allow us to obtain categories enriched over Kan complexes.

However, we can do better: the homotopy coherent nerve is the last step in
our construction, offering a bridge from simplicially enriched categories to sim-
plicial sets. More than that, the fact that the fibrant replacement returns cate-
gories enriched over Kan complexes will ensure that after chaining the homotopy
coherent nerve with the previous constructions, we end up with a quasi-category,
which will be called the underlying category of our starting model category.

We end by discussing in what sense the underlying category depicts the
same homotopy theory as its originating model category, touching on other
aspects of homotopy theory, like the ”homotopy theory of homotopy theories”
and equivalences of different homotopy theories.

1

https://vbvstrv.github.io/


Notation and conventions

We will adopt the following notations.

• Cat will be the category of locally small categories;

• sSet will denote the category of simplicial sets;

• RelCat is the category of relative categories (categories with weak equiv-
alences);

• CatsSet will be the category of simplicially enriched categories1.

1 A homotopy theory refresher

Nowadays, there are many ways to describe a homotopy theory. One of the
first means people found to do so is with model categories. Model categories are
categories with special morphisms representing weakened isomorphisms between
objects. They also have other structures that mirror our past experiences with
homotopy theories and help us to do more concrete work inside them. A more
general notion is that of a relative category, which only contains the weakened
isomorphisms and are around the topics we will discuss.

Apart from that low categorical approach to homotopy theory, there is the
concept of (∞, 1)-categories. These describes categories with higher dimensional
morphisms, that is, categories where besides only objects and morphisms, there
are morphisms between morphisms and morphisms between morphisms between
morphisms, and so on until infinity. Ordinary morphisms are usually referred to
as 1-morphisms, while morphisms between k-morphisms are said to be (k + 1)-
morphisms. In addition, the “1” in “(∞, 1)” tells us that every morphism of
dimension more than 1 is invertible. The theory of (∞, 1)-categories, which
we will be calling just ∞-categories, is not unique, in the sense that there are
many different ways to define something that fits in our intuitive idea of what
an infinity category should be.

We will be interested in two of these models for ∞-categories. One is that
of quasi-categories, which are simplicial sets with some properties. The other
one is described by Kan complex enriched categories, categories enriched over
special simplicial sets.

1.1 Model categories

One of the ways to describe homotopy theories is by the means of model cate-
gories. We abstract the core of homotopy theory in some environments to arrive
at a definition that captures the needed aspects to do homotopy theory.

1another common notation for this category is sCat, but that may rises some ambiguity
between simplicially enriched categories and simplicial objects in Cat
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Taking Top as an example, we often find ourselves concerned not about
homeomorphisms, but (weak or strong) homotopy equivalences. Weak homo-
topy equivalences are not isomorphisms in Top, but we wish they were since it is
the notion of equivalence we are interested in. The weak homotopy equivalences
are the special morphisms we use to do homotopy theory in Top.

In general, model categories will be categories with some special class of
morphisms that will work like weak homotopy equivalences. In reality, model
categories have other special morphisms and some properties connecting these
different types of arrows, while a category with only the weak equivalences
will be called a relative category. These other special morphisms present in
model categories frequently help in calculations, allowing one to work in a more
algebraic manner.

We proceed with some definitions, following the presentation of [Hov99]:

Definition 1.1.1 (retract). Given a category C, a map f in C is a retract of a
map g in C if there is some diagram

A B C

B D B

f g f ,

such that the composition of the horizontal arrows are identities.

Definition 1.1.2. A functorial factorization is a pair of functors (α, β) from
MapC to MapC such that f = β(f) ◦ α(f) for all maps in C.

Definition 1.1.3. If i : A → B and p : X → Y are maps in a category C, we
say that i has the left lifting property (LLP) with respect to p and p has the
right lifting property (RLP) with respect to i if every commutative square

A X

B Y

i

f

p

g

embeds into a diagram

A X

B Y

i

f

ph

g

.

Definition 1.1.4 (model category). A model category is a category C with
three distinguished classes of morphisms, two functorial factorizations (α, β)
and (γ, δ), and some axioms.

The three distinguished classes of morphism are:

• weak equivalences;

• fibrations;

• cofibrations.

We require the following axioms:

1. C is complete and cocomplete;
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2. If f, g are morphisms such that f ◦ g is defined, then every time two
morphisms from {f, g, f ◦ g} are weak equivalences, also is the third;

3. if f is a retract of g and g is a distinguished morphism of some kind, then
also is f , of the same kind;

4. we define trivial fibrations and trivial cofibrations to be weak equivalences
that also are fibrations or cofibrations, respectively. Trivial cofibrations
have the LLP with respect to fibrations and cofribrations have the LLP
with respect to trivial fibrations;

5. if f is a morphism in C, then α(f) is a cofibration, β(f) is a trivial
fibration, γ(f) is a trivial cofibration and δ(f) is a fibration.

Remark 1.1.5. Trivial fibrations and trivial cofibrations are sometimes also
called acyclic fibrations and acyclic cofibrations.

Remark 1.1.6. We defined a model category to be complete and cocomplete,
implying that every model category has initial and final objects. Given a cate-
gory C with initial and final objects 0 and 1, respectively, and an object x ∈ C
such that the (unique) morphism x → 1 is a fibration, then x is said to be a
fibrant object. The object x ∈ C is a cofibrant object if 0 → x is a cofibration.

Fibrant objects will play an important role in defining the functor RB , which
will allow us to replace general simplicially enriched categories by ∞-categories.

Fixed an object x in a model category C, the map x → 1 may not be a
fibration, but by the functorial factorization, it can be written as a composition
of a trivial cofibration and a fibration:

x 1

y
g f

.

Here, f is a fibration and g is a trivial cofibration. Thus, y is a fibrant
object. Since g is a trivial cofibration and, in particular, a weak equivalence,
this process of factorizing maps whose codomain is 1 finds fibrant objects which
are weak equivalent to the domain of our maps. Replacing our objects with
such fibrant objects is called a fibrant replacement.

Fibrant objects may have wanted properties not found in all objects of the
category C, so that the fibrant replacement is a trick for working with fibrant
objects instead of any objects.

There may be many ways to fibrantly replace an object or to fibrantly replace
all objects in a category. We will be interested in doing so for CatsSet, with a
suitable model structure.

One classic example of a model category is the one of topological spaces:

Example 1.1.7 (TopQuillen). Top has model structure, called the Quillen
model structure, where
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• weak equivalences are the weak homotopy equivalences;

• fibrations are the Serre fibrations (maps that have the right lift property
with respect to all inclusions of Dn, the n-disk, in Dn × [0, 1]);

• cofibrations are retracts of relative cell complexes (inclusions of sub-
spaces into spaces that can be constructed by attaching cells in the sub-
space).

In general, the functorial factorizations are not made explicit since they can
be recovered from the special morphisms once you know what they are. In this
case, it tells us about factorizing continuous functions as special maps.

Remark 1.1.8. Two classes of special morphisms are enough to define a model
category, two of them (no matter which ones) determine the third one.

The general philosophy of model categories is that the weak equivalences are
the really important morphisms and we would like them to be isomorphisms. By
sticking formal inverses in a model category we can turn weak equivalences into
isomorphisms. This is done by localizing a category by the weak equivalences,
leading us to a new category, the localization of C by W and that is the way we
build the homotopy category of a model category.

Definition 1.1.9 (localization). Let C be a category and W a collection of
morphisms of C. The localization of C by W is a category C[W−1] and a
functor Q : C → C[W−1] such that

• if w ∈ W then Q(w) is an isomorphism in C[W−1];

• for every category A and functor F : C → A carrying W into isomor-
phisms, there is a functor FW : C[W−1] → A and a natural isomorphism
F ⇒ FW ◦Q:

C A

C[W−1]

F

Q
FW

;

• the functor

(−) ◦Q : Fun(C[W−1], A) → Fun(C,A)

is full and faithful for every category A.

Remark 1.1.10. The localization is unique up to equivalence of categories.

Definition 1.1.11. Let C be a model category with weak equivalences W . The
homotopy category of C is Ho(C) := C[W−1], the localization of C by W .
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Looking at the homotopy category definition, we don’t see fibrations and
cofibrations anywhere. That is because weak equivalences already contain the
interesting information about homotopy. Indeed, we can discard fibrations and
cofibrations completely and still have categories that describe homotopy theo-
ries, known as relative categories. However, having fibrations and cofibrations
is a very useful property for homotopy theory, as illustrated by the fact that

HomHoC(X,Y ) = HomC(X
c, Y f ),

where Xc means the cofibrant replacement of X and Y f the fibrant replace-
ment of Y . We see that fibrations and cofibrations help us to handle calculations
in our model category.

There are many different model categories and it is interesting to have a
way to transit between them. We move between different model categories via
Quillen adjunctions.

Definition 1.1.12 (Quillen adjunction). Given two model categories C and D,
a Quillen adjunction between them is a pair of adjoint functors

C D
R

L

⊣

satisfying any of the following conditions.

• L preserves cofibrations and trivial cofibrations;

• R preserves fibrations and trivial fibrations;

• L preserves cofibrations and R preserves fibrations;

• L preserves trivial cofibrations and R preserves trivial cofibrations.

Remark 1.1.13. All the conditions above are equivalent.

The homotopy category allows us to define a Quillen equivalence, the notion
of equivalence between model categories.

Definition 1.1.14 (Quillen equivalence). Let L : C ⇆ D : R be a Quillen
adjunction and QC : C → HoC and QD :→ HoD be the universal functors
from the definition of the localization (definition 1.1.9). We define

• L, the left derived functor of QD ◦ L to be the right Kan extension of L
along QC ;

• R, the right derived functor of QC ◦ R to be the left Kan extension of R
along QD;

The Quillen adjunction L : C ⇆ D : R is said to be a Quillen equivalence if
some of the two equivalent conditions below hold:
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• L is an equivalence of categories;

• R is an equivalence of categories;

We can see why a Quillen equivalence is said to be the correct notion of
equivalence between model categories: two model categories may not be equiva-
lent, but they still can have equivalent homotopy categories, which means they
describe the same homotopy theory. A Quillen equivalence doesn’t care about
whether two model categories are the same in a strict categorical sense, but if
they are the same for homotopical purposes.

When working with the homotopy coherent nerve, we will make use of the
following well known lemma:

Theorem 1.1.15 (Ken Brown’s lemma). In a Quillen adjunction L : C ⇆ D :
R,

• L preserves weak equivalences between cofibrant objects;

• R preserves weak equivalences between fibrant objects;

1.2 ∞-categories

1.2.1 Simplicially enriched categories

Simplicially enriched categories2 are categories enriched over simplicial sets (def-
inition 1.2.3). That means that for any simplicially enriched category C ∈
CatsSet, instead of hom-sets HomC(x, y), we have simplicial sets HomC(x, y)•.

When requiring further properties to the hom simplicial sets, we obtain a
model for (∞, 1)-categories. Categories enriched over Kan complexes (definition
1.2.7) are a model to ∞-categories as each component of the hom simplicial set
describes morphisms of certain dimension. The 0th level of a hom simplicial set
HomC(x, y) corresponds to the morphisms between x and y. The 1st level rep-
resents 2-dimensional arrows between the morphisms that go from x to y. That
pattern is maintained as the k-th level of HomC(x, y) represents k-morphisms
between the (k − 1)-morphisms, the later being elements of the (k − 1)-th level
of the HomC(x, y).

The inverses of higher morphisms are determined by properties of Kan com-
plexes which, as discussed later, allows one to find inverses for all higher dimen-
sional morphisms, satisfying the requirements to be an (∞, 1)-category.

Thus, the category of simplicially enriched categories, CatsSet, has a sub-
category, the one of Kan complex enriched category, of ∞-categories. By trying
to apply other models for homotopy theory to the category CatsSet, we end up
with what we may call a homotopy theory of homotopy theories, since some el-
ements of CatsSet, the ones that are infinity categories, describe homotopy the-
ories. This will be done by considering the Bergner model structure in CatsSet.

2sometimes called simplicial categories, although we will not use the term here to avoid
confusion with other things that also receive that name
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However, to properly define this model structure, we need to talk about the
homotopy category of a simplicially enriched category.

Definition 1.2.1 (homotopy category of a simplicially enriched category).
Given C ∈ CatsSet, the homotopy category of C is the category Ho(C) which
has as objects the same objects as C and as morphisms the connected com-
ponents of the hom simplicial sets of C. That is, Ob(Ho(C)) = Ob(C) and
HomHo(C)(X,Y )
= π0(HomC(X,Y )).

Example 1.2.2 ((CatsSet)Bergner). The Bergner model structure in simplicially
enriched categories is defined by:

• weak equivalences: functions whose induced maps on the homotopy
categories (definition 1.2.1) are equivalences of categories and induced
maps on the homs are weak equivalences in sSetQuillen (example 1.2.13);

• fibrations: morphisms whose induced maps on the homs have the RLP
with respect to horn (definition 1.2.6) inclusions (fibrations in sSetQuillen)
and induces isofibrations3 in the homotopy categories;

• cofibrations: morphisms with the LLP with respect to trivial fibrations.

1.2.2 Quasi-categories

Quasi-categories are simplicial sets - presheaves on the simplicial category4 ∆
- satisfying a lifting property. Quasi-categories are particularly interesting be-
cause they model ∞-categories. We first define what a simplicial set is.

Definition 1.2.3 (simplicial set). A simplicial set is a functor X : ∆op → Set.

For each object [n] ∈ ∆, X[n] ⊂ Set, also denoted Xn, is thought as the
collection of n-simplices of X. The images by X of the degeneracy and face
maps of ∆ describes how these n-simplices of X are glued together. By the
Yoneda lemma, there is a correspondence between Xn and HomsSet(∆

n, X),
where ∆n = ∆[n] = Hom∆(−, [n]).

Remark 1.2.4. The simplicial category ∆ is generated by two classes of maps:
the face and degeneracy. This implies that stating what a simplicial set X :
∆op → Set does to objects and to face and degeneracy maps is enough to define
the whole functor. The practical implication of this fact is that when defining
a simplicial set, we usually only make explicit the n-simplices and the face and
degeneracy maps inside the simplicial set, since everything else is induced from
there.

3a functor F : C → D such that for any object x ∈ C and any isomorphism ϕ : F (x) → a,
there is an isomorphism ψ : x→ y such that F (ψ) = ϕ

4objects in the simplicial category are the natural numbers and arrows are order-preserving
functions
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As commented before, quasi-categories are simplicial sets with an extra prop-
erty. We define faces of a simplex and then horns, which will make possible to
talk about this extra property.

Definition 1.2.5 (face). The i-th face of ∆[n] is the image of δi, the face map
in ∆[n].

Intuitively, we are excluding the i-th vertex, keeping only the other ones,
defining a simplex which is the face opposite to i.

Definition 1.2.6 (horn). The k-horn of ∆[n] is the simplicial set obtained by
the the union of all faces of [n] but the k-th one.

A horn will be called an inner horn if 0 < k < n and an outer horn otherwise.
Horns will be denoted by Λk[n].

Definition 1.2.7 (Kan complex). A Kan complex is a simplicial set X : ∆op →
Set such that every horn Λk[n] in X, for n > 1 can be filled:

Λk[n] X

∆[n]

, for 0 ≤ k ≤ n.

Definition 1.2.8 (quasi-category). A quasi-category is a simplicial set X :
∆op → Set such that every inner horn Λk[n] in X, for n > 1 can be filled:

Λk[n] X

∆[n]

, for 0 < k < n.

Notice the subtle difference between general quasi-categories and Kan com-
plexes: the horn filling condition for quasi-categories is only required for inner
horns, while for Kan complexes it is required for every horn. This situates the
collection of Kan complexes inside the collection of quasi-categories, since filling
all horns implies filling the inner ones.

Like simplicially enriched categories, quasi-categories are also models for
∞-categories. The 0th level of a quasi-category X represents objects and the k-
th one represents the k-morphisms. The horn filling condition is used to mimic
ordinary categories in all levels, like composition, associativity and identities. In
the case of Kan complexes, it also provides inverses for all morphisms, including
1-morphisms. A nice discussion of how the horn filling conditions describe some
of these things can be found in [Rie09].

Remark 1.2.9. The term ∞-category is largely used as a synonym of quasi-
category. That is because quasi-categories are one of the most simple and easy
models of infinity categories to work with and there are certain notions of equiv-
alence between other models of ∞-categories and quasi-categories.
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We use the case study of a 2-simplex to picture how the horn filling condi-
tion contains the data about composition of morphisms and how being a Kan
complex gives you also a way to invert morphisms.

Example 1.2.10. A typical inner horn Λ1[2] inside X looks like

b

a c

gf .

To fill it is to find a 2-simplex in X that contains the horn:

b

a c
h

g f .

So we found a 2-morphism f ◦ g ⇒ h or, in intuitive terms, we found a map
which is (in a weak sense) the composition of f and g.

As for outer horns, it is not always true that given a diagram

b

a c

f

g

or
b

a c

f

g

,

we can find a map h to fill the gap between b and c. More than that, there
would also need to be a 2-morphism between g and the composition of f with
h. However, this map does exist if X is a Kan complex and we interpret this as
inverting the morphism g, converting, morally, the horn into an inner horn and
allowing the filling.

Given two simplicial setsX,Y , we can form another simplicial set Fun(X,Y ),
whose components are given by

Fun(X,Y )n = HomsSet(∆
n ×X,Y )

and the face and degeneracy maps are

σi : (∆
n ×X

f−→ Y ) 7→ (∆n+1 ×X
δi×id−−−→ ∆n ×X

f−→ Y )

δi : (∆
n ×X

f−→ Y ) 7→ (∆n−1 ×X
σi×id−−−−→ ∆n ×X

f−→ Y ).

Remark 1.2.11. The face and degeneracy maps of Fun(X,Y ) are the induced
maps of δ and σ by the functor Hom(−×X,Y ).

Remark 1.2.12. If Y is an ∞-category, then the simplicial set Fun(X,Y ) is
an ∞-category.
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As for simplicially enriched categories, one can form the category of simplicial
sets and try to attach homotopical structure in there. This introduces the
homotopy theory of simplicial sets, which will be given in terms of a model
structure in sSet, the Quillen model structure.

Example 1.2.13 (sSetQuillen). The Quillen model structure in simplicial sets
is given by:

• weak equivalences: weak homotopy equivalences of simplicial sets. That
is, maps whose geometric realization is a weak equivalence in TopQuillen

(example 1.1.7);

• fibrations: maps with the RLP with respect to all horn inclusions (defi-
nition 1.2.6);

• cofibrations: component-wise injective maps.

We can also define the homotopy category of a quasi-category, which is
important for the Joyal model structure in simplicial sets.

Definition 1.2.14 (homotopy category of a quasi-category). The homotopy
category of a quasi-category X is the category hX whose

• objects are the elements of X0;

• morphisms are the equivalence classes of X1 under the relation

f ∼ g if and only if there is a 2-simplex in X of the form

y

x y

f

g
or

x

x y

f

g
.

The Quillen model structure places an homotopy theory on simplicial sets,
but there is another model structure in sSet that model a homotopy theory of
quasi-categories, the Joyal model structure.

Definition 1.2.15 (sSetJoyal). There is a model structure in sSet where:

• weak equivalences are maps f : X → Y inducing equivalences between
the categories

hFun(Y,C) → hFun(X,C)

for any quasi-category C;

• cofibrations are the monomorphisms;

• fibrations are the morphism having the RLP wih respect to trivial cofi-
brations.

A very important difference between the Quillen and the Joyal model struc-
ture is that fibrant objects in the Quillen structure are only Kan complexes,
while fibrant objects in Joyal structure are all quasi-categories.
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2 The underlying construction

2.1 Hammock localization

The hammock localization is a way to obtain simplicially enriched categories
from model categories (or relative categories). It is presented as a better way
to store homotopical data by upgrading hom-sets to simplicial sets. Dwyer and
Kan first described the The simplicial localization in [DK80c] as an assignment
of simplicial objects in Cat to categories. Later, in [DK80a], they defined the
hammock localization, which returns simplicially enriched categories. The two
localizations share some important properties and are, for our purposes, the
same, but the hammock one is largely more used since it has a clearer definition
and, for this reason, we focus on the hammock localization here.

Definition 2.1.1. Given a category C and a subcollection W of morphisms of
C, we define the hammock localization of C by W as the simplicially enriched
category LH(C,W ), that has as objects the same objects as C and the k-th
component of a home simplicial set LH(C,W )(X,Y ) will be the collection of
hammocks

C0,1 C0,2 · · · C0,n

C1,1 C1,1 · · · C1,n

X
...

...
... Y

Ck,1 Ck,2 · · · Ck,n

of width k and any length n, satisfying a few properties:

• all vertical maps are in W ;

• maps of the same column have the same direction;

• if a map goes from the right to left, then it is in W ;

• adjacent columns have different directions;

• every column has a non-identity map.

The face map δi deletes the i-th row and the degeneracy map σi repeats
the i-th row. One may step into hammocks that do not satisfy the two last
properties listed. However, these problems can be solved by deleting columns
with only identity maps or composing columns that have the same direction.

Remark 2.1.2. The hammock localization is functorial (See 3.4 in [DK80a]).
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Theorem 2.1.3 ([DK80a] Prop. 3.1).

Ho(LH(C,W )) ≃ C[W−1].

Results from [DK80b] (4.4 and 5.4) led to the following conclusion, pointed
out in [Maz15].

Theorem 2.1.4. If L : C ⇄ D : R is a Quillen equivalence, then LHC and
LHD are weak equivalent in the Bergner model structure.

2.2 The RB functor

As we have seen, the hammock localization is a functor fromRelCat toCatsSet,
so that after applying it to a model category, one ends with an object inCatsSet.
By this time, we have a rich storage of homotopical data in simplicially en-
riched categories, but they still are not ∞-categories. We are going to replace
simplicially enriched categories by fibrant objects in (CatsSet)Bergner in order
to obtain, in fact, infinity categories. Let us see that the fibrant objects in
(CatsSet)Bergner are indeed ∞-categories.

Theorem 2.2.1. C ∈ (CatsSet)Bergner is a fibrant object if and only if C is
enriched over Kan complexes.

Proof. Suppose C is a fibrant object, we want to prove that it is enriched over
Kan complexes. C being a fibrant object, by definition, implies that the map
f : C → ∆[0] = 1 to the final object is a fibration, meaning it must induce
fibrations (in the Quillen model structure) between the simplicial hom sets of C
and 1. Remember that fibrations in the Quillen model structure are the maps
that have the RLP with respect to horn inclusions.

So let g : Λk[n] → HomC(x, y) be any map between simplicial sets and
f : HomC(x, y) → Hom1(fx, fy) = ∆[0] the induced map of f on the hom
simplicial sets. Since for each n the n-th set ∆[0]n is composed only by the
constant map

constn0 : [n] → [0]

k 7→ 0,

the function f is then forced to be constant, mapping every n-simplex of
HomC(x, y) into constn0 . Take the following square:

Λk[n] HomC(x, y)

∆[n] ∆[0]tr

g

f ,

where tr is the trivial map (there is no other one). To see that it commutes,
just observe that whatever g is, f ◦ g will always return the constant maps
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independently of the input, because of f . The same occurs for the other path,
since the trivial map collapses everything into the constant map. We conclude
that the square is commutative for any g.

Since the square commutes and f is a fibration in sSetQuillen, there is a lift
from ∆[n] to HomC(x, y):

Λk[n] HomC(x, y)

∆n ∆0tr

g

f
.

The upper triangle is precisely the horn filling condition for the simplicial
set HomC(x, y).

As for the other direction, the unique morphism from a Kan complex to ∆[0]
must return the constant maps and the only map from ∆[n] to ∆[0] is tr, the
trivial one. Hence, to check the RLP for the unique map f : HomC(x, y) → ∆[0],
one just needs to check the existence of lifts for the squares

Λk[n] HomC(x, y)

∆[n] ∆[0]tr

f ,

(that commute because of f and tr) which is given by the hypothesis that
HomC(x, y) is a Kan complex. The only left thing to verify is that f is an
isofibration, which is immediate from the fact that f is constant in each com-
ponent.

There may be many ways to fibrantly replace the objects in (CatsSet)Bergner.
Indeed, this category comes equipped with a natural fibrant replacement func-
tor. Instead of using this natural functor, we are going to do it by the means
of the Ex∞ functor. We are not going to discuss it in details here, but a more
complete description of this functor is given in [Gui]. In summary, the Ex∞

functor works by subdividing our simplicial sets in a limiting process in order
to create fillings for some horns. The Ex∞ functor is a fibrant replacement in
sSetQuillen, where the fibrant objects are Kan complexes.

Given a simplicially enriched category C ∈ CatsSet, for any x, y ∈ C,
HomC(x, y) is a simplicial set and we can apply the Ex∞ functor to it. We
define RB to be the functor that applies Ex∞ to the hom simplicial sets of
simplicially enriched categories. Hence, RB gives us Kan complex-enriched cat-
egories.

One may ask why we don’t use the natural fibrant replacement functor
instead of RB . It happens tha RB has some advantages: for example, RB(C)
has the same objects as C and it doesn’t changes the 0-simplices of the hom
simplicial sets. This way, we will keep carrying the original objects with us all
the way, since the hammock localization itself also doesn’t change the objects.
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Remark 2.2.2. Notice that since categories enriched over Kan complexes are
already ∞-categories, we could stop here, say that the underlying infinity cat-
egory of C is just RB(L

H(C)) and call it a day. However, quasi-categories are
much easier models for ∞-categories to work with, and we are encouraged to
take one more step to arrive at them.

2.3 Homotopy coherent nerve

Finally, we turn our eyes to the homotopy coherent nerve, a functor

Nhc : CatsSet → sSet

which will complete our toolkit to find the underlying category. Working
with quasi-categories is, in general, better than simplicially enriched ones, since
they require less data to be remembered. While quasi-categories are just sim-
plicial sets, simplicially enriched categories have a simplicial set for each hom.
That is why we take the homotopy coherent nerve, to get quasi-categories.

One may ask if by reducing the stored data we are not losing precious ho-
motopical information. The answer is actually no. As we will see, using sim-
plicially enriched categories or quasi-categories is a matter of choice, since they
are equivalent as models of ∞-categories.

We start with a simplicially enriched category C and we want a simplicial
set that has as 0-simplices (points) the objects of C, 1-simplices shall be the
0-cells of the hom simplicial sets in C, 2-simplices of our quasi-category should
be the 1-cells of the hom simplicial sets of C and so on. Formally, to do that we
follow the idea of considering the identity that characterizes the ordinary nerve,

HomsSet(∆
n, N(C)) = HomCat([n], C),

and replace [n] by a category C[∆n].
Before stating the definition of C[∆n], we fix the following notation.
Given a natural number n and two other numbers i, j < n, Pi,j is the poset,

ordered by inclusion,

{I ⊆ n : i, j ∈ I and k ∈ I ⇒ i ≤ k ≤ j}.

Definition 2.3.1. Given a natural number n, we define C[∆n] to be the category
whose

• objects are the naturals {0, 1, ..., n} not greater than n;

• maps from i to j are

HomC[∆n](i, j) =

{
∅ if j < i

N(Pi,j) if i ≤ j;
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• composition of maps is induced by union in the Pi,j sets

Pi0,i1 × Pi1,i2 × ...× Pim−1,im → Pi0,im

(I1, I2, ..., Im) 7→ I1 ∪ I2 ∪ ... ∪ Im.

N denotes the ordinary nerve functor. Notice that Pi,j is a poset and thus
a category, so that it makes sense to take its nerve.

Definition 2.3.2 (homotopy coherent nerve). Given a category C, the homo-
topy coherent nerve, also called the simplicial nerve, of C is the simplicial set
Nhc(C) whose components are given by

Nhc
k (C) = HomCatsSet

(C[∆k], C)

Theorem 2.3.3. The nerve is characterized by the equation

HomsSet(∆
n, Nhc(C)) ∼= HomCatsSet(C[∆

n], C). (1)

This is a direct consequence of our definition and the Yoneda lemma.
Equation 1 looks very much like an adjunction between Nhc and C[∆(−)].

That is because C[∆(−)] extends to a functor C : sSet → CatsSet and that
functor is a left adjoint of Nhc. This adjunction is actually way stronger, as the
following theorem indicates.

Theorem 2.3.4. The adjunction C : (CatsSet)Bergner ⇄ sSetJoyal : N
hc is a

Quillen equivalence.

Both the Bergner and Joyal model structures are models for a homotopy
theory of homotopy theories. This Quillen equivalence actually means that
quasi-categories and simplicially enriched categories are somewhat equivalent
as models for ∞-categories.

In addition, quasi-categories are the fibrant objects in sSetJoyal, so that
the homotopy coherent nerve has the property of mapping fibrant objects into
fibrant objects and the fibrant objects of both categories are infinity categories.
This result is summarized in the next theorem.

Theorem 2.3.5. If C ∈ CatsSet is a category enriched over Kan complexes,
then Nhc(C) is a quasi-category.

which follows from a combination of both results ([Cis19] Prop 3.7.2) and
([Lur09] 2.2.0.1).

Theorem 2.3.6. If C ∈ CatsSet is enriched over Kan complexes, then

HoC ∼= hNhcC.

Observe that the left hand side is the homotopy category of a simplicially
enriched category, while the right hand side is the homotopy category of a
quasi-category. Both are ordinary categories, but are built in slightly different
manners.
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3 The underlying category

We have now all the tools in order to define the underlying category of a category
C. As explained in the introduction, one just apply the three defined functors
in sequence and ends up with an ∞-category.

We shall explain how properties of these functors guarantee that the final
output is indeed an ∞-category and how this infinity category describes the
same homotopy theory than the starting model category. First, we define the
ud functor.

Definition 3.0.1. The ud functor is the composition

ud = Nhc ◦ RB ◦ LH .

The first functor in our composition is the hammock localization, which
contains the important homotopical data of our category in form of simplicial
hom sets. The homotopical data of the model category is carried with the
functor.

Indeed, theorem 2.1.3 shows that all homotopical data contained in the orig-
inal category can be recovered from the hammock localization.

After the hammock localization, we already get simplicially enriched cat-
egories. Then one could be tempted to apply the homotopy coherent nerve
straight away. However, it would not necessarily return a quasi-category, but
just general simplicial sets. The RB functor will be a stepping stone which will
lead us to infinity categories.

RB return categories enriched over Kan complexes, which already are ∞-
categories, so that this functor moves us closer to our destination. In addition,
by theorem 2.3.5, the homotopy coherent nerve maps Kan complex enriched
categories into quasi-categories. This way, Nhc ◦ RB will always be a quasi-
category.

We conclude that ud turns model categories into ∞-categories. We just
need, now, to verify a last claim:

C and udC describes the same homotopy theory.

The above statement can be formalized in the following theorem.

Theorem 3.0.2. For any model category C, HoC ≃ hud(C).

Proof. To prove this theorem, we show that every functor used in the definition
of ud preserves the homotopy category. First, theorem 2.1.3 ensures that when
hammock localizing C by its weak equivalences W , the homotopy category of
LH(C,W ) is equivalent to C[W−1], which is just HoC since W is the set of
weak equivalences of C.

Second, RB preserves the homotopy category: remember that when replacing
a category X ∈ CatsSet by a fibrant object, we are finding a weak equivalent
substitute for it. In the Bergner model structure, weak equivalences are maps
that induces equivalences on the homotopy categories. Hence, by definition, a
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category and its image by RB will always have equivalent homotopy categories.
Finally, theorem 2.3.6 ends our work straightforwardly.

An interesting remark is that all the functors in the construction of the
underlying functor ud fix the objects. The hammock localization LH(C) has
the same objects as C itself. RB operates only on the higher morphisms and
the nerve Nhc(D) has the objects of D as its 0th components. ud(C) is, then,
very faithful to C.

We finish our discussion with the following theorem, which translates equiv-
alences in the model categorical world to equivalences in the quasi-categorical
one.

Theorem 3.0.3. Every Quillen equivalence L : C ⇄ D : R rises a weak
equivalence (in Joyal model structure) between udC → udD.

Proof. From theorem 2.1.4, the Quillen equivalence induces weak equivalences
(in the Bergner model structure) between C ′ = LHC and D′ = LHD. RB

then replace C ′ and D′ by fibrant objects which are weak equivalent to them,
offering a sequence of weak equivalences RB(C

′) ∼= C ′ ∼= D′ ∼= RB(D
′), so that

RB maintain the weak equivalences.
Now, since RB(C

′) and RB(D
′) are weak equivalent fibrant objects, theorem

1.1.15 together with the fact that the nerve is the right adjoint of a Quillen
equivalence implies that RB(C

′) and RB(D
′) will land in weak equivalent objects

(in the Joyal structure).
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