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Introduction

Sheaf cohomology is a powerful tool in algebraic geometry. It can be used in
many different ways, like for obstruction theory and results like Serre’s duality
and all the versions of Riemann-Roch.

In this paper we focus on a particular use of sheaf cohomology, which is
in classifying affine schemes. The goal of the text is to prove Serre’s criterion
for affiness, a result giving necessary and sufficient conditions for a Noetherian
scheme to be affine, based on the cohomology of coherent and quasi-coherent
sheaves. The statement of the theorem is the following.

Theorem. For X a Noetherian Scheme, the following are equivalent:

1. X is affine;

2. Hn(X,F) = 0 for all n > 0 and quasi-coherent sheaf F ;

3. H1(X, I) for all coherent sheaves of ideals I.

The goal of this document is to present a basic use of sheaf cohomology, in
the form of a summary of the proof of an affiness criterion. We are going to cover
the basics of coherent and quasi-coherent sheaves and some results concerning
their cohomology.

The first section is dedicated to the presentation of the notions of coherent
and quasi-coherent sheaves. We base our discussion on chapters 2 and 3 of
[Har77] and the interested reader can check there for more details. We define
the sheaf associated to a module and we prove some basic results. Then we
present the concepts of coherent and quasi-coherent sheaves together with an
important theorem on the matter.

The proof of the main theorem is covered in section two. We prove some
necessary lemmas to obtain the criterion for affiness.
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Conventions

For us, a ring is a commutative ring with unity and morphisms of rings map
units to units. By an R-module we mean an abelian group with an action of R,
where the unit of R acts trivially.

We don’t particularly care about the sides of our modules. That means this
text was not written with the care of making the notation consistent with the
modules being left or right modules. In practice, if M is an R-module, we ask
the reader the patience to accept both r ·m and m ·r, independently ofM being
a right, left or bimodule. If it makes the reader comfortable, one can choose to
make all modules in this text right modules and every time some inconsistent
notation appears, swap the module and the ring elements to make it right. This
should not cause any issues as there are not substantial calculations involving
the elements of some module.

1 Quasi-coherent and coherent sheaves

In this section we are going to introduce the concepts of coherent and quasi-
coherent sheaves. The take-off of the idea of (quasi)coherent sheaves is that they
are part of an algebraic analogous of Serre-Swan Theorem on vector bundles.
The category of quasi-coherent modules over some affine scheme (X,OX) is
equivalent to the category of Γ(X,OX)-modules. Similarly to what happens
with vector bundles (which come with an equipped sheaf of sections), global
sections are responsible for this equivalence.

Maybe a slogan to have in mind is that vector bundles are not suitable for
homological algebra, as they do not form an abelian category. Quasi-coherent
sheaves can be though of as a generalization of vector bundles, one that does
form an abelian category.

First of all, we need to define the sheaf associated to a modules, as the actual
definition of (quasi)coherent sheaves is basically a sheaf that locally is a sheaf
associated to a module.

Definition 1 (Sheaf associated toM). Let A be a ring and M be an A-module.

We define a sheaf M̃ on SpecA by specifying what it does on a basis of SpecA.
For each f ∈ SpecA, set M̃(D(f)) = Mf . The sheaf M̃ is called the sheaf
associated to M on SpecA.

Now, we can show some basic results about it.

Proposition 2. Given an A-module M and a prime ideal p ∈ SpecA, the stalk
of M̃ in p is the localization

(M̃)p =Mp.

Proof. Interpreting the stalk of M̃ at p as compatible germs, we define a map
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colimf ̸∈p M̃(D(f)) = (M̃)p →Mp

(s, U) 7→ s(p).

Showing surjectivity is the easier part, as any element in Mp can be written
as a fraction m/f with f ̸∈ p, by definition. We can then consider the germ
(m/f,D(f)) as p ∈ D(f), which defines a section being mapped to m/f ∈Mp.

Now for injectivity, consider two compatible germs at p, denote them by a/f
and b/g with f, g ̸∈ p. From the definition of localization, there is some h ̸∈ p
such that h · (ag − bf) = 0. In particular, as h ̸= 0, in any localization Mq

where h is not a divisor of zero, a/f = b/g holds. That happens, for instance,
if h is a unit, a case that is comprehended in localizations at ideals in D(h).
Hence, the equation h · (ag − bf) = 0 implies a/f = b/g in localizations of
M at any ideal where 1/f, 1/g are defined and h is a unit, which is precisely
D(f)∩D(g)∩D(h). But this set is an open neighborhood of p as none of f, g, h
are in p and, consequently, a/f = b/g holds in some neighborhood of p, so the

germs corresponding to a/f and b/g are identified in the stalk (M̃)p.

Proposition 3. Let M be an A-module and M̃ the associated sheaf. The global
sections of M̃ are Γ(SpecA, M̃) =M .

Proof. Setting f = 1, we have D(f) = {p ∈ SpecA : 1 ̸∈ p} = SpecA, so

M̃(D(f)) = M̃(SpecA) =M1 =M .

The two theorems above are somehow expected from the way we defined the
sheaf associated to M . The definition is pretty much the same as the structure
sheaf on SpecA, replacing A with M . Indeed, the proofs are the same as the
ones used for the structure sheaf.

Now, we finally define coherent and quasi-coherent sheaves. As previously
stated, they are to be seen as sheaves that locally look like sheaves associated
to some modules.

Definition 4 (Quasi-coherent and coherent sheaf). If (X,OX) is a scheme and
F an OX-module. We say that F is a quasi-coherent sheaf if there is an
affine open cover {Ui}i with Ui = SpecAi and F|Ui

is isomorphic to a sheaf
associated to an Ai-module.

If each of these Ai-modules is finitely generated, then F is a coherent sheaf.

With the concepts of coherent and quasi-coherent in hand, we can see how
categories of quasi-coherent sheaves are related to categories of modules, via the
following theorem, that we state with no proof.

Theorem 5. Given an affine scheme X = SpecA, the global sections functor

Γ(X,−) and the functor (̃−) giving the associated sheaf to a module constitutes
an equivalence between the category of A-modules and the category of quasi-
coherent OX-modules.
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2 Cohomology of affine schemes

In this section, we prove our main theorem. We just need to go through some
necessary lemmas. The first interesting result we would like to use is the one
establishing a bijection between maps into an affine scheme and maps from the
corresponding ring. We first show this theorem in the case the maps into the
affine scheme are also coming from an affine scheme.

Lemma 6. There is a bijection

β : HomRing(A,B) → HomSch(SpecB, SpecA)

between morphisms of affine schemes and morphisms of the corresponding
rings.

Proof. Given a morphism of rings ϕ : A→ B, we define the maps (f, f#) in the
following manner:

• let f be the preimage function ϕ−1, so f(p) = ϕ−1(p);

• testing the continuity of f can be done on the basic open sets and then
we have f−1(D(g)) = D(ϕ(g)), which is also open;

• we define f# in the distinguished opens by setting it to be the map

f#(D(g)) : OSpecA = Ag → Bϕ(g) = OSpecB(D(ϕ(g))) ∼= f∗OSpecB(D(g))

obtained by localization;

• set β(ϕ) to be (f, f#) as above.

One can see the injectivity of β as soon as one sees that for two different
morphisms of rings, the corresponding inverse image functions are distinct. For
surjectivity, take any morphism (f, f#) between the schemes SpecB and SpecA.
Applying the global sections functor gives a morphism ϕ : A→ B (just take the
f#(SpecA) : Γ(SpecA,OSpecA) = A→ B = Γ(f−1(SpecA),OSpecB) ).

The claim is that testing ϕ = f#(SpecA) against β gives back the morphism
of schemes (f, f#) we started with. This is the observation that as ϕ is on global
sections, it must be compatible with restrictions. In particular, the restriction
of ϕ to distinguished opens must coincide with the morphisms obtained by
evaluating f# at the corresponding distinguished opens. But the restriction of
ϕ to distinguished opens is precisely the localization of ϕ, which is precisely the
definition of the map of sheaves OSpecA → f∗SpecB we get when applying β to
ϕ.

Now we upgrade the previous result replacing SpecB by a general scheme
X. As usual, we use the lemma above in each open of the affine cover of X and
glue everything.
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Proposition 7. Let (X,OX) be a scheme. Then, for any ring A, there is a
bijection

α : HomSch(X,SpecA) → HomRing(A,Γ(X,OX)).

Proof. Lemma 6 is the special case for X affine. We will cover X with an affine
cover and use the affine case to obtain the general one. Define α in the same
way as one does for the affine case (see the proof Lemma 6 for a reminder) and
take an affine cover {Ui = SpecBi} of X, for which we know the maps

αi : HomSch(SpecBi,SpecA) → HomRing(A,Bi)

are isomorphisms, being αi obtained by restricting α to each affine cover, so
they take the role of α for the affine cases, as in Lemma 6. This way, we get
commutative diagrams

HomSch(X,SpecA) HomRing(A,Γ(X,OX))

HomSch(Ui,SpecA) HomRing(A,Bi)

α

|Ui
resX,Ui

αi

one for each i. With this, we can show α is a bijection as well. For injectivity,
consider two morphisms f = (f, f#) and g = (g, g#) fromX to SpecA such that
α(f) = α(g). Then, restricting f, g and α(f) and α(g), by the commutativity
of the diagrams above, we obtain for each i, morphisms of rings

αi(f |Ui
) = resX,Ui

(α(f)) = resX,Ui
(α(g)) = αi(g|Ui

).

But each αi is injective, so f |Ui
= g|Ui

for all i. By identity (of morphisms
of schemes), since the Ui form a cover for X, f = g.

Now, for surjectivity, we start with a map of rings ϕ : A → Γ(X,OX)
and restriction gives for each i a morphism of rings ϕi : A → Bi. Using the
surjectivity of the αi, we can find morphisms of schemes fi : Ui → SpecA such
that αi(fi) = ϕi. Furthermore, since each Ui is affine and the proposition we
are proving holds for the affine case, the ϕi’s are forced to agree on intersections
of the Ui’s. In more precise terms,

ϕij := resUi,Ui∩Uj (ϕi) = resUj ,Ui∩Uj (ϕj),

and as Ui∩Uj is affine, we can get a bijection αij , lifting ϕij to some fij that
can be obtained by restricting fi and fj . So we can use gluability to construct
a map f : X → SpecA, giving the surjectivity of α.

An interesting remark about Proposition 7 is that it can be restated in terms
of an adjunction between Spec and the dual of global sections Γ(), defined in
the dual category of rings Ring∗.
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Definition 8 (Quasi-compact scheme). A scheme (X,OX) is said to be quasi-
compact if X is compact as a topological space.

We are now approaching our main result. We want to prove a more technical
lemma that gives a criterion for affiness, one that will be used during the proof
of Serre’s criterion. We first fix the notation below and start our laborious work.

Notation: For a global section f ∈ Γ(X,Ox), we denote by Xf the set
{x ∈ X : fx ̸∈ mx}.

Lemma 9. Let (X,OX) be a scheme and A = Γ(X,OX) its ring of global
sections. If X has a finite affine cover {Ui} with each intersection Ui∩Uj being
quasi-compact, then for any f ∈ A, we have Af

∼= Γ(Xf ,OXf
).

Proof. Define the map

ϕ :Af → Γ(Xf ,OXf
)

a/fn 7→ resX,Xf
(a)/ resX,Xf

(f)n.

We will show that ϕ, as above, is a bijection.

For the injectivity part, suppose a/fn ∈ A is such that resX,Xf
(a/fn) = 0.

Write X as a finite union of affine schemes using its quasi-compactness X =
U1 ∪ · · · ∪ Uk and consider the elements resX,Ui∩Xf

(a/fn) for different i’s.
Each Ui

∼= SpecBi is affine, so fi = resX,Ui
(f) is a global section of an affine

scheme. Then, unpacking the established notation, (Ui)fi = {p ∈ SpecBi :
fi ̸∈ mp} is the same as the set of ideals p in Ui where fi ̸∈ (Bi)p, that is, the
distinguished open D(fi) for SpecBi. As resX,Xf

(a/fn) = 0, composition with
further restrictions still gives 0, so resX,Xf∩Ui

(a/fn) = 0 as well. The detail
here is that resX,Xf∩Ui

(a/fn) lives in Γ(Ui,OX) ∼= (Bi)fi , so being 0, by the

definition of localization at fi means that f lia = 0 for some l in Bi.
Of course this process can be done for each i so we get many different

exponents for which the terms f lia will all be 0. As there are finitely many
Ui’s, we can choose the largest exponent m and as the Ui cover X, we can glue
the fmi to form fm, so fma = 0, so a/fn = 0.

Now surjectivity. Take an element a ∈ Γ(Xf ,OXf
), by restricting it to

the intersection with opens of an affine covering U1 ∪ · · ·Uk, as before, we get
resXf ,Xf∩Ui

(a) living in Γ(Xf ∩ Ui,OXf
) ∼= (Bi)fi . An element of this ring is

generally given by a fraction ai/f
li
i . Define the sections

si = f (
∑

j lj)−libi

and notice that resUi,Xf∩Ui(si) = resXf ,Xf∩Ui(f
∑

j lja), so si and sj coincide
in their intersections Ui ∩Uj . In the injectivity proof, we have seen that in this
case, as Ui and Uj are affine (and then so is Ui ∩ Uj), there is some m such
that fm(si − sj) in Ui ∩ Uj . As there are finitely many Ui’s and Uj ’s, each
pair guaranteeing some m, we can choose a very large value M working for all
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the pairs and some extra room, yielding, as in the proof for injectivity, sections
fMbi ∈ Γ(Ui,OX).

The last step is to use gluability to form a global section fMb. Then, one can
divide by a sufficiently large power of f in Af to get the element that restricts
to a.

Lemma 10. A scheme (X,OX) is affine if, and only if, there is a finite set
of global sections {f1, . . . , fn} ⊂ Γ(X,OX) such that each Xfi is affine and the
sections f1, . . . , fn generate Γ(X,OX) as an ideal.

Proof. If (X,OX) is an affine scheme X = SpecA, then 1 ∈ A is a global section
and X1 = D(1) = X, so this direction is done.

The other direction is not so easy. Let {f1, . . . , fn} be global sections of
the scheme (X,OX) with Xfi

∼= SpecAi affine and the fi’s generating A =
Γ(X,OX).

By Proposition 7, we have a map of schemes ψ : X → SpecA associated
with the identity A→ Γ(X,OX).

Restricting ψ to Xfi yields maps ψi : Xfi → Spec Γ(Xfi ,OXfi
). By hypoth-

esis, the Xfi are all affine, so Lemma 9 establishes the isomorphism between
Xfi and Spec Γ(Xfi ,OXfi

) ∼= SpecAfi .
Then, X is covered by the open affines Xfi due to the fi’s generating A.

And the maps Xfi → Afi are all compatible as they come from the restriction
of ψ. Hence, we can glue all of them to get ψ back, which is then forced to be
an isomorphism.

This finishes the more technical part. Now we do a small calculation that
will be used in Serre’s criterion.

Proposition 11. If F is a quasi-coherent sheaf on an affine scheme X = SpecA
where A is Noetherian, then Hn(X,F) = 0 for all n > 0.

Proof. Given a quasi-coherent sheaf F on X = SpecA, we let M = Γ(X,F) be
its A-module of global sections and then we choose an injective resolution

0 →M → I•

for M . From the equivalence of categories described in Theorem 5, we may
replace F by M̃ . Now, considering the sheaves associated to the modules of the
resolution I• we obtain a resolution for M̃

0 → M̃ → Ĩ•

that can be used to compute cohomology, as the sheaves Ĩi are flasque
and flasque sheaves are acyclic. Hence, H0(X, M̃) = Γ(X, M̃) = M and

Hn(X, M̃) = 0 for n > 0.
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That is it. We are ready to prove our main theorem. Serre’s criterion for affi-
ness is a result concerning Noetherian schemes. The definition of a Noetherian
scheme is given below, just before the statement and proof of the theorem.

Definition 12 (Noetherian Scheme). A scheme (X,OX) is locally Noethe-
rian if every point x ∈ X has an affine neighborhood U ∼= SpecR with R a
Noetherian ring. If the scheme X is also quasi-compact, then it is a Noethe-
rian scheme.

Theorem 13. If X is a Noetherian Scheme. The following statements are
equivalent.

1. X is an affine scheme;

2. Hn(X,F) = 0 for all n > 0 and quasi-coherent sheaf F ;

3. H1(X, I) for all coherent sheaves of ideals I.

Proof. The implication (1) ⇒ (2) is Proposition 11. Implication (2) ⇒ (3)
follows from the definition, as all coherent sheaves are quasi-coherent.

We only need to show (3) ⇒ (1). For that, consider a closed point P ∈ X
and an open affine neighborhood U of P . Define Y to be X \ U , so we have an
exact sequence of ideal sheaves

0 IY ∪{P} IY k(P ) 0

with quotient being a skyscraper sheaf at P with values in (OX)P /mP . This
way, we obtain an exact sequence on cohomology

Γ(X, IY ∪{P}) → Γ(X, IY ) → Γ(X, k(P )) → H1(X, IY ∪{P}) → · · · .

But we are working under the hypothesis that the first cohomology of co-
herent sheaves of ideals vanishes, so the last term is simply 0, meaning the
map Γ(X, IY ) → Γ(X, k(P )) is surjective. Consequently, there is some element
f ∈ Γ(X, IY ) which is mapped to 1 ∈ k(P ), so fP ̸∈ mP and, thus, Xf ⊂ U .
More precisely, if we let g = resX,U (f), then Xf = Ug, which is affine because
U is. In synthesis, every closed point admits an affine open of the form Xf .

Now, what we need to do is take all the closed points of X and select, using
the quasi-compactness of X, a finite amount, yielding a finite set f1, f2, . . . , fn
of global sections of an affine cover Xf1 , Xf2 , . . . , Xfn . This way, we can define
a morphism of sheaves α : (OX)n → OX that maps (a1, . . . , an) ∈ Γ(U,OX)n to∑
ai resX,Ui

(fi). The fact that the sets Xfi cover X guarantees its surjectivity.
We can fit this map into an exact sequence with its kernel:

0 F On
X OX 0.α
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Looking at the long exact sequence on cohomology, at the moment we observe
that H1(X,F) = 0, we can conclude that the map Γ(X,α) is a surjection and
we conclude that the f1, . . . , fn generate Γ(X,OX), from where we can apply
Lemma 10.

To see why H1(X,F) is trivial, one can look at the sequence of inclusions

F ∩OX ⊂ F ∩O2
X ⊂ · · · ⊂ F ∩ On

X = F

giving rise to short exact sequences

0 F ∩Ok
X F ∩Ok+1

X
F∩Ok+1

X

F∩Ok
X

0,

one for each k. Thus, for each k there is a long exact sequence in cohomology.
The interesting thing is the exactness of the part

H1(X,F ∩Ok
X) H1(X,F ∩Ok+1

X ) H1(X,
F∩Ok+1

X

F∩Ok
X

).

If we could show that H1(X,F∩Ok
X) = 0, then, since F∩Ok+1

X /F∩Ok
X is a

coherent sheaf of ideals, the left and right terms in the exact sequence are trivial
by hypothesis and we conclude that H1(X,F ∩ Ok+1

X ) = 0 as well. Together
with the fact that F ∩ OX is a coherent sheaf of ideals, we have the base case
for our induction.

This way, as F ∩On
X = F , we get that H1(X,F) is trivial, as desired.

We are done. It is interesting to note that there are other versions of this
theorem, with loosened requirements. One can prove the same result by re-
quiring only quasi-compactness instead of full Noetherianess. There are many
versions with different conditions both in the scheme and in the coherent and
quasi-coherent sheaves, but the proofs may differ.
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