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RESUMO

MACIEL, S. Dimensão de Kimura de motivos de Chow. 2024. 44 p. Monografia (Bacharelado

em Matemática) – Instituto de Matemática e Estatı́stica, Universidade de São Paulo, São Paulo,

2o Semestre de 2024.

Nesse trabalho, apresentamos a construção da categoria dos motivos de Chow, as conjecturas

padrão e o conceito de dimensão de Kimura, introduzida, de forma independente, por Kimura e

O’Sullivan. Em seguida, discutimos algumas propriedades de motivos de dimensão finita, como

estabilidade por soma e produto tensorial, e provamos que o motivo de Chow de curvas tem

dimensão finita, apresentando algumas consequências desse fato para a teoria dos motivos.

Palavras-chave: Dimensão de Kimura. Motivos de Chow.



ABSTRACT

MACIEL, S. Kimura dimension of Chow motives. 2024. 44 p. Monografia (Bacharelado em Matemática)

– Instituto de Matemática e Estatı́stica, Universidade de São Paulo, São Paulo, 2o Semestre de 2024.

In the present work, we construct the category of Chow motives and show the standard

conjectures. Following that, we define the notion of Kimura dimension of a motive, introduced,

independently, by Kimura and O’Sullivan. Then, we present some of the main properties of

finite-dimensional motives, such as stability under sum and tensor product, and prove that the

motive of a curve is finite-dimensional. We end by discussing some consequences of this result.

Keywords: Kimura dimension. Chow motives.
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Introduction

The idea of a motive was introduced in 1964 by Grothendieck in a letter to Serre, where he

mentions the term in a rather mysterious way, as something that “looks like the ℓ-adic coho-

mology group of an algebraic scheme, but considered as being independent of ℓ”. At the time,

Grothendieck himself recognizes that he does not yet know how to appropriately define the cat-

egory of motives, but that the “yoga of motives” is already taking shape. In fact, in the same

letter where he introduced the term, even with no concrete representation of the idea of mo-

tives, he proceeds to make speculative comments on the utility of such a notion. For example,

Grothendieck explains that he expects “good cohomology theories” (which we call Weil coho-

mology theories today) to factor through the category of motives. He also suggests the existence

of deep relations of the category of motives with the Grothendieck ring of varieties. In fact, he

predicts the existence of a map from the Grothendieck ring of varieties to the category of motives.

The concept of motive rapidly became prominent in the Grothendieck-Serre correspondence

and started to be widely used in algebraic geometry. From there, the theory of motives has made

appearances in many different contexts, with a wide variety of applications, and has had lasting

influence on a large portion of algebraic geometry.

Grothendieck believed that the theory of motives would make it possible to prove the Weil

conjectures (as he explains in [Gro]). The most evident manifestation of this ambition is the

formulation of the standard conjectures, a collection of conjectures on the structure of algebraic

cycles that would have strong implications for the theory of motives. So strong, in fact, that they

would imply the Weil conjectures. One could say that Grothendieck was to know that Deligne’s

proof of the Weil conjectures did not use the theory of motives (as visible in [Gro] and registered

in [Sch]). Even though the Weil conjectures have already been proven, the standard conjectures,

despite partial progress, remain open, along with many other fundamental questions about mo-

tives that are still completely or only partially answered.

The purpose of this work is to introduce the reader to the notion Kimura-O’Sullivan dimension

of a pure motive and tropes about the subject. In the first chapter, we present the classical theory

of Chow motives, constructing the category of pure motives and discussing important properties
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CONTENTS

of this category, as well as some fundamental features of its objects. Afterwards, we dedicate

some time to state the standard conjectures and explain the relation between them.

In the second chapter, we encounter the notion of Kimura-O’Sullivan dimension of a motive.

Then, we start proving many results about finite-dimensional motives. Using this set up work,

we will be able to make statements about the dimension of certain motives: we will show that

the motive associated to any variety dominated by products of curves is finite-dimensional.
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Chapter 1

The category of pure motives

1.1 Construction and elementary properties

In this section, we will construct the category of Chow motives and prove some general facts

about it. We direct the reader to [Ful98] for a complete introduction to adequate equivalence

relations, Chow groups, and intersection theory. Denote by SmProj(k) the category of smooth

projective varieties over the field k. Given an adequate equivalence relation ∼, e.g., rational

equivalence, we write C∼(X) for the ring of cycles on X up to the relation ∼. This ring has

a natural grading given by Ci
∼(X), the cycles of codimension i. For example, if ∼ is rational

equivalence, C∼(X) is just the Chow ring CH(X). We also write Ci
∼(X; Q) for Ci

∼(X)⊗ Q.

Definition 1.1.1 (Correspondence). For X, Y ∈ SmProj(k), define

Corr∼(X, Y) := C∼(X × Y; Q).

We call an element of Corr∼(X, Y) a correspondence from X to Y.

From now on, we will often omit ∼ in both Corr∼ and C∼, and work with an implicit equiv-

alence relation. Similarly, since we will only work with rational coefficients, we will omit Q

in C(X; Q) and write simply C(X). Quintessential instances of correspondences are graphs of

morphisms between algebraic varieties, and we will think of a correspondence as a type of gen-

eralized morphism between varieties. Following this idea, we often write a correspondence

f ∈ CH(X × Y) as f : X −→ Y and we intuitively think of Corr(X, Y) as a thickening of

HomSmProj(X, Y). The canonical isomorphism C(X × Y) ∼= C(Y × X) immediately allows us

to view f ∈ Corr(X, Y) as a correspondence from Y to X as well, but we make the choice to

differentiate between these two correspondences: we will instead write f T for f viewed as a

correspondence from Y to X.
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1.1. CONSTRUCTION AND ELEMENTARY PROPERTIES

We may compose correspondences as follows. If f ∈ Corr(X, Y) and g ∈ Corr(Y, Z), then

g ◦ f is defined to be

g ◦ f := [πX×Z]∗[π
∗
X×Y( f ) · π∗

Y×Z(g)],

where · stands for the intersection product in C(X × Y × Z). In some situations (especially in

longer computations), to improve readability, we will write g f for the composition g ◦ f . We give

a special name to the correspondences that are idempotent with respect to composition.

Definition 1.1.2 (Projector). A projector is a correspondence p ∈ Corr(X, Y) satisfying p ◦ p = p.

Definition 1.1.3 (Degree of a correspondence). Let X, Y ∈ SmProj(k) be connected varieties with

dim X = m, then we define

Corrd(X, Y) := Cm+d(X × Y).

Elements of Corrd(X, Y) are then said to have degree d.

If X and Y have multiple connected components X1, . . . , Xr and Y1, . . . , Ys, then we have the

equality C(X × Y) = ⊕i,jC(Xi × Yj) between graded rings. So letting m = dim X the maximum

of the dimensions of the Xi, we may say a correspondence from X to Y has degree d if it belongs

to Cd+m(X × Y).

Let X, Y, Z be varieties of dimension m, n, r, respectively, then the following facts are imme-

diate from the definition:

(i) if f ∈ Corrd(X, Y), then f T ∈ Corrd+m−n(Y, X);

(ii) if f ∈ Corrd(X, Y) and g ∈ Corrl(Y, Z), then g ◦ f ∈ Corrd+l(X, Z);

(iii) if p ∈ Corr(X, X) is a projector, then p has degree 0;

(iv) if f ∈ Corrd(X, Y), then ∆Y ◦ f = f and f ◦ ∆X = f , where ∆X = {(x, x) : x ∈ X} and

∆Y = {(y, y) : y ∈ Y}.

A correspondence f ∈ Corrd(X, Y) induces a homomorphism on cycles

f∗ : Ci(X) −→ Ci+d(Y)

Z 7−→ f∗(Z) = [πY]∗( f · π∗
X(Z)).

If the implicit adequate equivalence relation is finer than homological equivalence, then f ∈

Corrd(X, Y) also induces a homomorphism on any Weil cohomology groups (see [Jon07] for an
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1.1. CONSTRUCTION AND ELEMENTARY PROPERTIES

introduction to Weil cohomology theories):

f∗ : Hi(X) −→ Hi+2d(Y)

α 7−→ f∗(α) = [πY]∗(γ( f ) ∪ π∗
X(α)).

Definition 1.1.4 (The category of motives). Denote by Mot∼(k) the category whose objects are

triples (X, p, m), where X is a smooth projective variety, p ∈ Corr∼(X × X) is a projector, and m

a natural number. Morphisms in Mot∼(k) are given by

HomMot∼(k)((X, p, m), (Y, q, n)) := q ◦ Corrn−m
∼ (X, Y) ◦ p,

so a morphism from (X, p, m) to (Y, q, n) is a correspondences from X to Y of the form q ◦ f ◦ p,

where f ∈ Corrn−m
∼ (X, Y). As for Chow rings, we will omit ∼ in Mot∼(k).

A motive of the form (X, p, 0) is called an effective motive. There is a functor

h : SmProj(k)op −→ Mot(k)

X 7−→ (X, ∆X, 0)

whose image lies in the subcategory of effective motives Moteff(k), that is, the full subcategory

whose objects are the effective motives. A morphism of smooth projective varieties f : X −→

Y is mapped to the morphism of motives ΓT
f : h(Y) −→ h(X), that is, the transpose of the

correspondence given by the graph of f .

Another perspective on the construction of the category of motives is the following. A

Karoubian (or pseudo-abelian) category is a pre-additive category where every idempotent has

kernel and cokernel. The Karoubian completion of a category is a procedure to construct a

Karoubian category from any pre-additive category. One can form a category Corr(k) whose

objects are smooth projective varieties and morphisms are degree zero correspondences. Then,

the category of effective motives is defined to be the Karoubian completion of Corr(k). In fact, a

morphism of effective motives f : (X, p, 0) −→ (Y, q, 0) is a correspondence of the form f = q f ′p,

with f ′ ∈ Corr0(X, Y), which is equivalent to q ◦ f = f = f ◦ p. This is exactly the usual descrip-

tion of the construction of the Karoubian completion of a category.

To arrive at the category of motives from the one of effective motives constructed as the

Karoubian completion of Corr(k), one only needs to observe that there is a tensor product in

Moteff(k) and formally adding an inverse for the motive (P1, P1 × {∗}, 0) with respect to this

tensor product gives Mot(k). This story will become clear after we describe the monoidal struc-
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1.1. CONSTRUCTION AND ELEMENTARY PROPERTIES

ture on Mot(k).

The category Mot(k) is an enlargement of Moteff(k) that accounts for twists of effective mo-

tives, which are meant to incorporate Tate twists of Hodge structures. Moreover, Mot(k) is

a Q-linear category: given two motives M = (X, p, m) and N = (Y, q, n), Corrn−m(X, Y) =

Cn(X × Y) is a Q-vector space (remember we work with rational coefficients). Given two maps

of motives f = q f ′p and g = qg′p, linearity of composition of correspondences implies that

q f ′p + qg′p = q( f ′ + g′)p,

so q ◦ Corrn−m(X, Y) ◦ p is a subspace of Q-vector, giving HomMot(k)(M, N) the structure of a

Q-vector space.

Definition 1.1.5 (Tensor product of motives). Given two motives M = (X, p, m) and N =

(Y, q, n), their tensor product is defined to be

M ⊗ N = (X × Y, p × q, m + n).

This tensor product turns Mot(k) into a symmetric monoidal category. The unit is the motive

of a point 1 = h(Spec k) = (Spec k, ∆Spec k, 0). Fixing a point e ∈ P1, we define the Lefschetz

motive to be

L = (P1, P1 × e, 0),

and the Tate motive to be

T = (Spec k, ∆Spec k, 1).

Then, the morphism of motives ∆Spec k ◦ (P1 × Spec k) ◦ (P1 × e) : L −→ (Spec k, ∆Spec k,−1)

is an isomorphism: its inverse is (P1 × e) ◦ (Spec k × e) ◦ ∆Spec k. From this fact, it becomes

clear that L ⊗ T = 1. In addition, the natural projection together with the inclusion maps X ×

Spec k −→ X and X −→ X × Spec k produce (through their graphs) an isomorphism (X, p, m)⊗

T ∼= (X, p, m + 1). It follows that (X, p, m)⊗ L ∼= (X, p, m − 1).

Definition 1.1.6 (Direct sum of motives). Given M = (X, p, m) and N = (Y, q, n), if m = n, then

we define the direct sum of them to be

M ⊕ N = (X
⊔

Y, p ⊔ q, m).

If m ̸= n, one can tensor with the Tate and Lefschetz motives to fall in the previous case.

A quick observation on notation: given two correspondences p : X −→ Y, q : Z −→ W, their

6



1.1. CONSTRUCTION AND ELEMENTARY PROPERTIES

product p × q : X × Y −→ Z × W is another correspondence. We will also write p × q as p ⊗ q.

Hence, the product of p with itself n times will be denoted as p⊗n.

Definition 1.1.7 (Chow rings of motives). Let M = (X, p, m), then p∗ is a map Ci(X) −→

Ci+m(X). We define Ci(M) := Im(p∗).

Similarly, if we fix a Weil cohomology theory and a work with an adequate equivalence re-

lation finer than or equal to homological equivalence, then a projector also induces a map on

cohomology and the following definition makes sense.

Definition 1.1.8 (Cohomology of motives). Let M = (X, p, m). Then p induces a homomorphism

p∗ : Hi(X) −→ Hi+2m(X). We define Hi(M) := Im(p∗).

Recall that h : SmProj(k) −→ Mot(k) is the functor sending a variety X to (X, ∆X, 0). From

the definitions it follows immediately that C(h(X)) = C(X) and H(h(X)) = H(X). One may ask

when the gradings of H(X) and C(X) lift to motives, i.e., whether there exist motives hi(X) =

(X, ∆i
X, 0) such that h(X) = ⊕ihi(X) = (X, ∑ ∆i

X = ∆X, 0) and the equalities H(hi(X)) = Hi(X)

and C(hi(X)) = Ci(X) hold. At the moment, this stands as a conjecture, but many interesting

cases are known, for example, for abelian varieties. Later we will define the symmetric power

of a motive, and one can show that there are isomorphisms Symj h1(A) ∼= hj(A) for every j.

Those isomorphisms, after realization to cohomology, turn into the well-known relation H j(A) =∧jH1(A) between the cohomology groups of an abelian variety.

Now that we are familiar with the general structure of the category of motives, we shall say

something about the images of projectors in this category. Recall that a morphism of motives

is given by a correspondence of the form q Fix a motive M = (X, p, m) and an endomorphism

f = p f ′p : M −→ M, where f ′ ∈ Corr0(X, X). Also assume f is a projector in the category of

motives, so f ◦ f = f . The construction of Mot(k) ensures that the image of f certainly exists.

The usual construction of the Karoubian completion also gives an explicit description for Im( f ):

it is given by (X, f , m). To see this, consider the morphisms of motives

f ◦ f ′ ◦ p : M −→ (X, f , m) and p ◦ f ′ ◦ f : (X, f , m) −→ M.
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1.1. CONSTRUCTION AND ELEMENTARY PROPERTIES

Their composition is

(p f ′ f )( f f ′p) = p f ′(p f ′p)(p f ′p) f ′p

= (p f ′p) f ′pp f ′(p f ′p)

= p f ′pp f ′pp f ′pp f ′p

= (p f ′p)(p f ′p)(p f ′p)(p f ′p

= f ◦ f ◦ f ◦ f

= f .

Above, we used multiple times that p and f are projectors, so p = p ◦ p and f = f ◦ f . From

this calculation, we conclude that the maps f f ′p and p f ′ f give a splitting of the projector f . A

similar argument shows that this splitting is universal, so (X, f , m) is, in fact, Im( f ).

The upshot of this argument is that the image of a projector f : (X, p, m) −→ (X, p, m) is

(X, f , m). Another consequence of the argument above is that Im( f ) is a summand of M.

We finish this section with a proposition that will be very handy for later calculations.

Proposition 1.1.9 (Lieberman’s identity). Let f : X −→ Y, α : X −→ X′, and β : Y −→ Y′ be

correspondences. Then

(α × β)∗( f ) = β ◦ f ◦ αT.

Proof. We compute

(α × β)∗( f ) = (πX′×Y′)∗ [(α × β) · π∗
X×Y( f )] ,

which is equal to

(πX′×Y′)∗
[
(αT × β) · (X′ × f × Y′)

]
after switching X and X′ on the product X × X′ × Y × Y′. Notice that now the projection πX′×Y′

is from X′ × X × Y × Y′. We can further rewrite the expression above as

(πX′×Y′)∗
[
(αT × Y × Y′) · (X′ × X × β) · (X′ × f × Y′)

]
.

Now, notice that πX′×Y′ can be factorized as πX′×Y×Y′ , so we can write

(α × β)∗( f ) = (πX′×Y×Y′

X′×Y )∗
[
(πX′×Y×Y′)∗

(
(αT × Y × Y′) · π∗

X′×Y×Y′(X′ × β) · (X′ × f × Y′)
)]

.
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1.2. THE STANDARD CONJECTURES

Applying the projection formula gives

(α × β)∗( f ) = (πX′×Y×Y′

X′×Y )∗
[
(X′ × β) · (πX′×Y×Y′)∗

(
(αT × Y × Y′) · (X′ × f × Y′)

)]
. (1.1)

But πX′×Y×Y′ = πX′×X×Y
X′×Y × idY′ , so

(πX′×Y×Y′)∗
(
(αT × Y × Y′) · (X′ × f × Y′)

)
= (πX′×X×Y

X′×Y )∗
(
(αT × Y) · (X × f )

)
× Y′,

which, by definition, is equal to ( f ◦ αT)× Y′.

Pluggin it in Equation 1.1, we get

(α × β)∗( f ) = (πX′×Y×Y′

X′×Y )∗
[
(X′ × β) ·

(
( f ◦ αT)× Y′

)]
,

which is just β ◦ f ◦ αT.

1.2 The standard conjectures

Grothendieck stated four conjectures that today are known as the standard conjectures. These

conjectures have huge implications on the theory of motives and are deeply related with other

important conjectures in algebraic geometry. We shall dedicate some time to introduce these con-

jectures, as well as describe how they connect to each other and further problems in algebraic

geometry. We will present a list with four conjectures: Conjecture A (non-degeneracy), Conjec-

ture B (Lefschetz type), Conjecture C (Kunneth type), Conjecture D (numerical = equivalence),

and Conjecture Hdg (Hodge type). However, they will not be presented in this order. For the

rest of this section, we fix a Weil cohomology theory.

Consider a variety X of dimension n and the cycle class of its diagonal γ(∆X) ∈ H2n(X × X).

It decomposes, by the Kunneth decomposition, into components

∆i
X ∈ H2n−i(X)⊗ Hi(X).

Conjecture C(X) (Kunneth conjecture). The components ∆i
X are algebraic. That is, ∆i

X = γ(∆i)

for some cycles ∆i ∈ Cn(X × X).

For a projective variety X and γ(P) ∈ H2(X) the cycle class of a (general) hyperplane section,

9



1.2. THE STANDARD CONJECTURES

we can define the Lefschetz operator

L : Hi(X) −→ Hi+2(X)

α 7−→ α ∪ γ(P).

By definition, L is induced by an algebraic cycle. Writing d for the dimension of X, the Hard

Lefschetz Theorem says that Lj : Hd−j(X) −→ Hd+j(X) is an isomorphism for every 0 ≤ j ≤ d.

We define the map Λ : H j(X) −→ H j−2(X) to be the composition

H j(X)
Ld−j
−→ H2d−j(X)

L−→ H2d−j+2(X)
(Ld−j+2)−1

−→ H j−2(X), for 0 ≤ j ≤ d

and

H2d−j(X)
(Ld−j)−1

−→ H j(X)
L−→ H j+2(X)

Ld−j−2

−→ H2d−j−2(X) for 0 ≤ j ≤ d.

Conjecture B(X) (Lefschetz-type conjecture). The map Λ is induced by an algebraic cycle. This

is to say that there is an algebraic cycle λ ∈ CH(X × X) such that Λ(α) = (π2)∗[γ(λ) ∪ π∗
1(α)],

where π1 and π2 are the two projections X × X −→ X.

Now, consider a variety X of dimension n and the (n − 2i + 1)-th iteration of the Lefschetz

operator

Ln−2i+1 : Hi(X) −→ H2n−2i+2(X).

We write Ai(X) := Im(γ) for the algebraic cohomology classes. Now, define the i-th primitive

algebraic classes of X to be

Ai
prim(X) := Ai(X) ∩ ker(Ln−2i+1) := Im(γ) ∩ ker(Ln−2i+1).

Conjecture Hdg(X) (Hodge-type conjecture). For i ≤ n/2, the following pairing is positive-

definite:

Ai
prim(X)× Ai

prim(X) −→ Q

(α, β) 7−→ (−1)i Tr(Ln−2i(α) ∪ β)

Conjecture A(X). The pairing Ai(X)× An−i(X) −→ Q is non-degenerate.

Conjecture D(X). Homological and numerical equivalence of cycles in X coincide.

We remark on the presence of a certain notational device we have been using above. Notice

that we have been naming the conjectures as if they were functions of X. For example, the
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1.2. THE STANDARD CONJECTURES

Kunneth conjecture is referred to as the Conjecture C(X). This allows us to talk about whether a

certain conjecture holds for a specific variety, enabling us to use sentences such as “C(Pn) holds”.

Below, we show a diagram showing the logical relations between conjectures A(X), B(X),

C(X), D(X), and Hdg(X). An implication is represented by an arrow.

Hdg(X) + B(X) Hdg(X) + A(X)

B(X) D(X)

C(X) A(X)

A less straightforward relation is that

A(X) for all X ⇐⇒ B(X) for all X.

If we are dealing with a variety X for which we know Hdg(X) holds, e.g. when the field has

characteristics zero, then the diagram simplifies to

B(X)

C(X) D(X) A(X).

If we are working over C, the Hodge conjecture, denoted by Hodge(X) plays a role too:

Hodge(X)

B(X)

C(X) D(X) A(X).

For a more general case of varieties of a field of characteristics zero, Tate conjecture, repre-

sented by Tate(X) also implies the standard conjectures:

Tate(X)

B(X)

C(X) D(X) A(X).
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1.2. THE STANDARD CONJECTURES

In a general field of nonzero characteristics the Tate conjecture does not necessarily imples

conjecture Hdg(X), but it still implies all other standard conjectures.

It would be difficult to paint a picture of the full collective knowledge we have on the truth

value of these conjectures, but we can make an effort to write down at least some known cases.

1. Conjecture B(X):

• projective spaces;

• grassmanians;

• curves;

• surfaces [Kle67];

• abelian varieties [Kle67].

2. Conjecture C(X):

• projective spaces [Kle67];

• grassmanians [Kle67];

• curves (B(X) =⇒ C(X));

• surfaces (B(X) =⇒ C(X));

• abelian varieties (B(X) =⇒ C(X));

• flag varieties [Kle67];

• varieties over a finite field [KM74].

3. Conjecture D(X):

• abelian varieties over fields of characteristic zero [Lie68];

4. Conjecture Hdg(X):

• surfaces [Gro58];

• varieties over a field of characteristics zero (follows from Hodge theory).

If valid, these conjectures would have important consequences on the theory of motives, as

well as other topics of major interest in algebraic geometry. For instance, they were originally

though of as a natural path to prove the Weil conjectures (even though the standard conjectures

remain open and the Weil conjectures have been proven).
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As an illustration of the impact of the standard conjectures in the theory of motives, consider

the category Mot∼(k). One of the expectations is that there should be a category with nice prop-

erties such that every Weil cohomology factors through it. Mot∼(k) was constructed with the

intention of being such a category. But many properties of Mot∼(k) depend on the choice of the

equivalence relation ∼. For example, we need ∼ to be at least as fine as homological equiva-

lence for h∼ : SmProj −→ Mot to factorize all Weil cohomology theories. Simultaneously, it is a

theorem of Jannsen [Jan92] that Mot∼(k) is abelian and semisimple if and only if ∼ is numerical

equivalence. Thus, conjecture D guarantees that there exists at least one adequate equivalence

relation (namely, numerical equivalence), for which Mot∼(k) can be semisimple, abelian and

factorize all Weil cohomology theories.

As a separate remark, we should mention that Jannsen’s theorem is much more recent than

the standard conjectures. In reality, the statement that Motnum(k) is abelian semisimple would

be a consequence of conjectures Hdg(X) and B(X) for every X ∈ SmProj(k). It just so happens,

as with the Weil conjectures, that Hdg(X) and B(X) are still open and Jannsen found another

way to prove that Motnum(k) is abelian semisimple.

In some sense, the Hodge and Tate conjectures are stronger versions of the standard conjec-

tures. Besides having the standard conjectures as consequences, they are all about the algebraic-

ity of cohomology classes. In fact there are situations where the standard conjectures imply the

Hodge and Tate conjectures (at least for some classes of varieties). For instance, we have the

following theorems

Theorem 1.2.1 ([Yve04]). If conjecture B(X) holds for every X ∈ SmProj(C), then the Hodge

conjecture holds for abelian varieties over C.

Theorem 1.2.2 ([Yve04]). If conjecture B(X) holds for every X ∈ SmProj(Fp), then the Tate

conjecture for abelian varieties over Fp.
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Chapter 2

The dimension of motives

2.1 Kimura dimension and its properties

We introduce the concept of Kimura dimension of a motive and prove some facts about it. These

ideas are built on the representation theory of the symmetric group.

In view of the correspondence between complex irreducible representations of the symmetric

group Sn and partitions of n, for each partition λ ⊢ n, write Wλ for the representation associated

to λ (e.g., via a C[Sn]-module structure or a map ρλ : Sn −→ GLn(Wλ)). Given a representation

ρλ : Sn −→ GLn(Wλ), its character is the morphism χλ : Sn −→ C that maps g ∈ Sn to χλ(g) =

Tr(ρλ(g)). The idempotents

eλ :=
dim Wλ

n! ∑
g∈Sn

χλ(g) · g

generate C[Sn]. The Artin-Wedderburn theorem then takes the form

C[Sn] ∼=
⊕

λ

End(Wλ), End(Wλ) = C[Sn] · eλ.

If one takes λ = (n), i.e., the trivial representation, then e(n) = 1
n! ∑g∈Sn

g, while the sign

representation λ = (1, . . . , 1) gives 1
n! ∑g∈Sn

sgn(g) · g. If C is a symmetric monoidal category,

the braiding isomorphism gives an action of Sn on X⊗n for any X ∈ C. When C is also Q-

linear, one can linearly extend the action of Sn to Q[Sn]. A formal consequence is that given

two elements r, s ∈ Q[Sn] and the morphisms r, s : X −→ X they determine, the composition

X r−→ X s−→ X is equal to the morphism determined by s · r. In particular, for any partition

λ ⊢ n, the idempotent eλ ∈ Q[Sn] induces a projector in C. If C is further pseudo-abelian, then

the image of the endomorphism induced by eλ exists.

This described construction works in any Q-linear pseudo-abelian symmetric monoidal cat-

egory C. As a result, for each partition λ ⊢ n, we get a functor Tλ : C −→ C. In particular, it can
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be done for the category of motives, we discuss now.

For any variety X, the symmetric group Sn acts on Xn by permutation of coordinates. For

each g ∈ Sn, we have a morphism Xn −→ Xn and the associated correspondence given by its

graph Γg(X) : Xn −→ Xn. For r = ∑g∈Sn
r(g) · g an element of Q[Sn] ⊂ C[Sn], we define

Γr(X) := ∑
g∈Sn

r(g)Γg(X).

In this way, every element of Q[Sn] yields a correspondence Γr(X) = ∑g∈Sn
r(g)Γg(X) from

Xn to itself. The formal consequence Γr(X) ◦ Γs(X) = Γr·s(X) we mentioned before has a concrete

proof in the world of motives:

Γr(X) ◦ Γs(X) = [π1,3]∗

[(
∑

g∈Sn

r(g)Γg(X)× Xn

)
·
(

Xn × ∑
h∈Sn

s(h)Γh(X)

)]

= ∑
g∈Sn

∑
h∈Sn

r(g)s(h) · [π1,3]∗
[(

Γg(X)× Xn) · (Xn × Γh(X))
]

= ∑
g∈Sn

∑
h∈Sn

r(g)s(h) · Γg(X) ◦ Γh(X)

= ∑
g∈Sn

∑
h∈Sn

r(g)s(h) · Γg·h(X)

= ∑
b∈Sn

 ∑
g,h∈Sn
gh=b

r(g)s(h)

 Γb(X)

= Γr·s(X).

If M = (X, p, m) is a motive, then Γg(X) is a morphism M⊗n −→ M⊗n. In particular, Γg(X) ◦

p⊗n = p⊗n ◦ Γg(X).

Lemma 2.1.1. Fix a motive M = (X, p, m). Then

1. Γr(X) ◦ p⊗n = p⊗n ◦ Γr(X) for any r ∈ Q[Sn];

2. (Γeλ
(X) ◦ p⊗n) ◦

(
Γeµ(X) ◦ p⊗n) = 0 for all partitions λ ̸= µ;

3. ∑λ Γeλ
(X) = Γ1 and (X, ∆X, 0) =

⊕
λ(X, Γλ, 0).

Proof. 1. This follows from the linearity of composition:

(
∑

g∈Sn

r(g)Γg(X)

)
◦ p⊗n = ∑

g∈Sn

r(g)
(
Γg(X) ◦ p⊗n)

= ∑
g∈Sn

r(g)
(

p⊗n ◦ Γg(X)
)
= p⊗n ◦

(
∑

g∈Sn

r(g)Γg(X)

)
;

16
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2. This is a consequence of the fact that the eλ are orthogonal:

(
Γeλ

(X) ◦ p⊗n) ◦ (Γeµ(X) ◦ p⊗n)
= Γeλ

(X) ◦ Γeµ(X) ◦ p⊗n ◦ p⊗n

= Γeλ·eµ(X) ◦ p⊗n;

3. Similarly,

∑
λ

Γeλ
(X) = Γ(∑λ eλ) = Γ1.

Finally, for all λ ⊢ n, the correspondences Γeλ
(X) are projectors on M and we can consider

their image Im(Γeλ
(X)), which is by definition Tλ M. Recalling how one computes images of

projectors, we have the following definition.

Definition 2.1.2. Given a motive M = (X, p, m) and a partition λ of n, we define

Tλ M = (Xn, Γeλ
◦ p⊗n, nm) = Im(Γeλ

(X)).

For λ = (1, . . . , 1) or λ = (n), we write

∧n
M := T(1,...,1)M and Symn M := T(n)M.

Note that since the eλ generate the group ring Q[Sn], we get M⊗n =
⊕
λ⊢n

Im(Γeλ
(X)).

Definition 2.1.3 (Kimura dimension of a motive). Let M ∈ Mot(k) be a motive.

• M is even if
∧n M = 0 for all n sufficiently large. The maximal n for which

∧n M ̸= 0 is

called the even dimension of M.

• M is odd if Symn M = 0 for all n sufficiently large. The maximal n for which Symn M ̸= 0

is called the odd dimension of M.

• M is finite-dimensional if it can be written as M = M+ ⊕ M− where M+ is even and M−

is odd. In this case, the dimension of M is the sum of the odd and even dimensions of M−

and M+, respectively.

This definition makes sense in the context of general pseudo-abelian symmetric monoidal

categories. In addition, if M is finite-dimensional, it may be the case that there are multiple

ways to decompose M into a sum M+ ⊕ M− of even and odd motives. So, it may not be clear
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that dim(M) is well defined, but we will see shortly that such a decomposition is unique up to

isomorphism.

Since finite dimensionality comes in two flavors: even or odd, we will often talk about the

parity of a finite-dimensional motive, in the same vein as one talks about the parity of an integer.

For example, two motives have the same parity if they are both even or both odd.

The condition Symn M = (Xn, Γe(n) ◦ p⊗n, nm) = 0, and analogously for
∧n M, means that

Γe(n) ◦ p⊗n ∼ 0. Since Sn ⊂ Sn+1, we can write e(n+1) as a product e(n+1) = r · e(n) for some r.

Hence,

Γe(n+1) = Γr ◦ Γe(n) ,

which means that whenever Symn M is zero, so is Symn+1 M, and the analogous implication

holds for
∧n M. In synthesis, if Symn M = 0 then the odd dimension of M is less than n, and the

analogous statement holds for the even dimension.

Given a motive M = (X, p, m), we may decompose H(M) into an odd part Hodd(M) :=⊕
k H2k+1(M) and an even one Heven(M) :=

⊕
k H2k(M). Then, we have the following proposi-

tion.

Proposition 2.1.4. For any motive M, we have

H(Symn M) =
⊕

i+j=n

Symi Heven(M)⊗
∧j

Hodd(M)

and

H
(∧n

M
)
=

⊕
i+j=n

∧i
Heven(M)⊗ Symj Hodd(M).

We mentioned before that in the case of motives of abelian varieties, there is a decomposition

h(A) =
⊕

i hi(A) and isomorphism Symi(h1(A)) ∼= hi(A). With the formulas above, we can, for

example, calculate

Hn(A) = H(hn(A)) ∼= H(Symn h1(A) =
⊕

i+j=n

Symi Heven(h1(A))⊗
∧j

Hodd(h1(A)).

But Hi(h1(A)) = 0 whenever i ̸= 1, so Heven(h1(A)) = 0. Thus, the only non-vanishing term is

when i = 0, so j = n and we get

Hn(A) = H(hn(A)) =
∧n

Hodd(h1(A)) =
∧n

H1(A).
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Lemma 2.1.5. Given two motives M, N ∈ Mot(k), we have the formulas

Symn M ⊕ N) =
⊕

i+j=n

Symi M ⊗ SymjN

and ∧n
(M ⊕ N) =

⊕
i+j=n

∧i
M ⊗

∧j
N.

Proof. Let M = (X, p, m) and N = (Y, q, n). We will only show the first one and for the case

m = n, as the proof of the second is analogous and the the general situation where m ̸= n

follows from twisting by Tate and Lefschetz motives. By definition,

Symn(M ⊕ N) =
(
(X ⊔ Y)n, Γe(n)(X ⊔ Y) ◦ (p ⊔ q)⊗n, nm

)
.

Now, we introduce the following notation. For I ⊂ [n] = {1, 2, . . . , n} and J = [n] \ I, we write

X I × Y J for the product of |I| copies of X and |J| copies of Y where the copies of X appear in the

positions indexed by the elements of I and the copies of Y appear in the positions indexed by the

elements of J. Then we have decompositions

(X ⊔ Y)n =
⊔

I⊂[n]
J=[n]\I

X I × Y J ,

and

(p ⊔ q)⊗n =
⊔

I⊂[n]
J=[n]\I

p⊗I × q⊗J .

Consequently,

Symn(M ⊕ N) =

 ⊔
I⊂[n]

J=[n]\I

X I × Y J , Γe(n)(X ⊔ Y) ◦

 ⊔
I⊂[n]

J=[n]\I

p⊗I × q⊗J

 , nm

 .

If we write Γe(n)(X ⊔ Y) as 1
n! ∑g∈Sn

Γg(X ⊔ Y), we can study Γg(X ⊔ Y) for each g ∈ Sn. For a

permutation g ∈ Sn, notice that Γg(X ⊔ Y) can be written as the following intersection product:

∆1,g(1)(X ⊔ Y) · ∆2,g(2)(X ⊔ Y) · · ·∆n,g(n)(X ⊔ Y),

where ∆i,j(X ⊔ Y) stands for the cycle on (X ⊔ Y)n given by {(x1, . . . , xn) ∈ (X ⊔ Y)n : xi = xj}.
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Hence, we have the composition

Γg(X ⊔ Y) ◦
⊔

I⊂[n]
J=[n]\I

p⊗I × q⊗J = ∆1,g(1)(X ⊔ Y) · ∆2,g(2)(X ⊔ Y) · · ·∆n,g(n)(X ⊔ Y) ◦
⊔

I⊂[n]
J=[n]\I

p⊗I × q⊗J

=
⊔

I⊂[n]
J=[n]\I

[
∏
i∈I

∆i,g(i)(X) ◦ pI

]
×
[
∏
j∈J

∆j,g(j)(Y) ◦ pJ

]
.

This way, we can write Symn(M ⊕ N) as

Symn(M ⊕ N) =

 ⊔
I⊂[n]

J=[n]\I

X I × Y J ,
1
n! ∑

g∈Sn

Γg(X ⊔ Y) ◦

 ⊔
I⊂[n]

J=[n]\I

p⊗I × q⊗J

 , nm



=

 ⊔
I⊂[n]

J=[n]\I

X I × Y J ,
1
n! ∑

g∈Sn

⊔
I⊂[n]

J=[n]\I

[
∏
i∈I

∆i,g(i)(X) ◦ pI

]
×
[
∏
j∈J

∆j,g(j)(Y) ◦ pJ

]
, nm



=

 ⊔
I⊂[n]

J=[n]\I

X I × Y J ,
1
n!

⊔
I⊂[n]

J=[n]\I

∑
h∈SI
h′∈SJ

[
Γh(X) ◦ pI

]
×
[
Γh′(Y) ◦ pJ

]
, nm

 . (2.1)

Now, we can use the fact that for any two partitions I, J and I′, J′ of [n] with |I| = |I′| we have

isomorphisms

(X I × Y J , pI × qJ , nm) ∼= (X I′ × Y J′ , pI′ × qJ′ , nm),

to rewrite Equation 2.1 as a union indexed by the possible sizes of I and J, accounting for how

many partitions there are for each given size. Fixed 0 < i, j < n with i + j = n, there are n!
i!j!

partitions I, J of [n] such that |I| = i and |J| = j, so Equation 2.1 becomes

=

 ⊔
i+j=n

Xi × Y j,
n!
i!j!

· 1
n!

⊔
i+j=n

∑
g∈Si

∑
h∈Sj

[
Γg(X) ◦ p⊗i × Γh(Y) ◦ q⊗j

]
, (i + j)m


=

 ⊔
i+j=n

Xi × Y j,
⊔

i+j=n

(
1
i! ∑

g∈Si

Γg(X) ◦ p⊗i

)
×

 1
j! ∑

h∈Sj

Γh(Y) ◦ q⊗j

 , (i + j)m


=

⊕
i+j=n

(
Xi × Y j, Γe(i)(X) ◦ p⊗i × Γe(j)(Y) ◦ q⊗j, (i + j)m

)
=

⊕
i+j=n

(
Xi, Γe(i)(X) ◦ p⊗i, im

)
⊗
(

Y j, Γe(j)(Y) ◦ q⊗j, jm
)

=
⊕

i+j=n

Symi M ⊗ Symj N.
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Theorem 2.1.6. Given two motives M, N ∈ Mot(k), the following are true.

1. M and N are both even if and only if M ⊕ N is even;

2. M and N are both odd if and only if M ⊕ N is odd;

3. if M and N are finite dimensional, then so is M⊕ N. In addition, dim(M⊕ N) ≤ dim(M)+

dim(N).

Proof. 1. Suppose
∧k+1M =

∧l+1N = 0, with k and l the even dimensions of M and N,

respectively. The last lemma says

∧k+l+1
(M ⊕ N) =

⊕
i+j=k+l+1

∧i
M ⊗

∧j
N = 0

since any pair i, j summing i + j = k + l + 1 will have i > k or j > l, so the even dimension

of M ⊕ N is less than or equal to k + l.

Conversely, if
∧k(M ⊕ N) = 0 for some k, every summand

∧i M ⊗ ∧jN must vanish, in-

cluding when i = k or j = k.

2. The argument is the same as above.

3. Suppose M = M+ ⊕ M− and N = N+ ⊕ N− with M+, N+ even and M−, N− odd. In this

scenario, the two items we proved above show that M+ ⊕ N+ is even and M− ⊕ N− is odd,

so

M ⊕ N = (M+ ⊕ N+)⊕ (M− ⊕ N−)

presents M ⊕ N as a decomposition into an even and an odd part. In addition, the dimen-

sion of M ⊕ N is, by definition, equal to dim(M+ ⊕ N+) + dim(M− ⊕ N−), while

dim(M+ ⊕ N+) ≤ dim(M+) + dim(N+),

dim(M− ⊕ N−) ≤ dim(M−) + dim(N−).

Hence, we obtain

dim(M ⊕ N) ≤ dim(M+) + dim(M−) + dim(N+) + dim(M−) = dim(M) + dim(N).
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We remark that the converse of the third item of the theorem above also holds (Corollary

2.1.20): as we will see, if M ⊕ N is finite-dimensional, then both M and N are also finite-

dimensional. It is just that we did not develop the technology to show this yet.

Recall that a Young Tableau on a Young diagram is simply a way to fill the squares of the

Young diagram with non-repeating numbers from 1 up to the number of squares. Given a Young

tableau T on the Young diagram associated with λ ⊢ n, the symmetric group Sn acts on the

diagram by permuting the squares according to their numbers. We obtain two subgroups of Sn:

Rλ(T) := {g ∈ Sn : each row of T is invariant by g},

Cλ(T) := {g ∈ Sn : each column of T is invariant by g}.

We also get the following three elements of Q[Sn]:

aλ(T) := ∑
g∈Rλ(T)

g,

bλ(T) := ∑
g∈Cλ(T)

sgn(g)g,

cλ(T) := aλ(T)bλ(T).

These are idempotents, defining projectors X⊗n −→ X⊗n for any X ∈ C in a pseudo-abelian

symmetric monoidal category. Furthermore, the images of aλ(T) and bλ(T) do not depend on

the choice of tableau T and they are equal to

aλ(M) = Symλ1 M ⊗ · · · Symλs M

bλ(M) =
∧λ′

1 M ⊗ · · ·
∧λ′

r M,

where λ = (λ1, . . . , λs) and λ′ = (λ′
1, . . . , λ′

r) is the conjugate partition of λ.

The assignment X ∈ C 7−→ Im(cλ), where cλ : X⊗n −→ X⊗n, defines a functor known as

the Schur functor associated with λ and is denoted by Sλ. One can then define X ∈ C to be

Schur finite if Sλ(X) = 0 for some λ. A Kimura finite-dimensional object is always Schur finite,

but the converse does not hold. For example, O’Sullivan constructed a Schur finite-dimensional

motive that is not Kimura finite-dimensional. We will not work with the notion of Schur finite-

dimensional motive here, but it has important relations with conjectures about mixed motives.

Lemma 2.1.7. Given n ≥ k, a motive M, and a partition λ = (λ1, . . . , λs) ⊢ n, we have

1. if Symk+1 M = 0 and λ1 > k, then Tλ M = 0;
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2. if
∧k+1M = 0 and s ≤ k + 1, then Tλ M = 0.

There is a more general form of this lemma, where, for example, in the first item, one requires

that λi > k for some i.

Proof. We only show the first part as the proof for the second part is analogous. If M = (X, p, m),

then Tλ M = (Mn, Γeλ
◦ p⊗n, nm). Fixing a tableau T for λ, we write

aλ := aλ(T),

bλ := bλ(T),

cλ := cλ(T) = aλbλ.

As eλ = r · cλ for some r ∈ Q[Sn], we have Γeλ
(X) = Γr(X) ◦ Γaλ

(X) ◦ Γbλ
(X). We argue that

Γaλ
(X) = 0. The image of aλ is

Im(aλ) = Symλ1 M ⊗ · · · ⊗ Symλs M.

In the case λ1 > k, we have Symλ1 M = 0, so Tλ M = 0.

Theorem 2.1.8. Let M, N be two motives. Then,

1. if M, N have the same parity, then M ⊗ N is even;

2. if M and N have different parity, then M ⊗ N is odd.

In both cases, dim(M ⊗ N) ≤ dim(M)dim(N).

Proof. 1. Suppose M = (X, p, m), N = (Y, q, n) are both odd and let d and l be their respective

dimensions (the proof for the even case is analogous). We will show that
∧dl+1(M ⊗ N) =

0. First of all,

(M ⊗ N)dl+1 = Mdl+1 ⊗ Ndl+1 =
⊕

λ,µ⊢dl+1

Im(Γeλ
(X))⊗ Im(Γeµ(Y)).

Thus we can compute
∧dl+1(M ⊗ N) by calculating the image of Γe(1,...,1)(X × Y) on the
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direct sum above, which gives us

Γe(1,...,1)(X × Y)

 ⊕
λ,µ⊢dl+1

Im(Γeλ
(X))⊗ Im(Γeµ(Y))


=

⊕
λ,µ⊢dl+1

Γe(1,...,1)(X × Y)
[
Im(Γeλ

(X))⊗ Im(Γeµ(Y))
]

=
⊕

λ,µ⊢dl+1

Im
[
Γe(1,...,1)(X × Y) ◦ (Γeλ

(X)⊗ Γeµ(Y))
]

.

To continue, we use that for any two partitions λ, µ of a number L, the following relation

holds:

e(1,...,1) · eλ ⊗ eµ =


e(1,...,1) if µ = λ′,

0 otherwise.

Above, λ′ means the conjugate partition of λ. As a consequence, the summands

Γe(1,...,1)(X × Y) ◦ Im(Γeλ
(X))⊗ Im(Γeµ(Y))

vanish every time λ′ ̸= µ. So we only need to show that the product of the form Tλ M ⊗

Tλ′ N are trivial. Write λ = (λ1, . . . , λs) and λ′ = (λ′
1, . . . , λ′

r). If λi > d for some i, then

Lemma 2.1.7 implies Tλ M = 0 and we are done. If λi ≤ d for all i, then s must be at least

l + 1, so λ′
1 > l and we conclude that Tλ′ N = 0.

2. Now, consider two motives M = (X, p, m) and N = (Y, q, n), where M is even of dimension

d and N is odd of dimension l (if the parities were reversed, we just change the roles of M

and N). Similar calculations as the ones done for the first item give

Symdl+1(M ⊗ N) =
⊕

λ,µ⊢dl+1

Im
[
Γe(dl+1)(X × Y) ◦ (Γeλ

(X)⊗ Γeµ(Y))
]

.

This time, however, the relations we use are

e(dl+1) · eλ ⊗ eµ =


e(dl+1) if µ = λ,

0 otherwise.

So we reduced the problem to show that the summands of the form Tλ M ⊗ TλN are zero

for every λ ⊢ dl + 1. If some λi is greater than l, then Lemma 2.1.7 implies TλN = 0. If this

is not the case, then λi ≤ l for every i, forcing s ≥ d + 1, which means Tλ M = 0.
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In the respective analyzed cases, we saw that Symdl+1(M ⊗ N) and
∧dl+1(M ⊗ N) vanish, so

the dimension of M ⊗ N can not be greater than dl = dim(M)dim(N).

Corollary 2.1.9. Given two varieties X, Y ∈ SmProj(k), if the motives h(X) and h(Y) are finite-

dimensional, then so is h(X × Y).

Definition 2.1.10 (Smash-nilpotent morphism). A morphism f : M −→ N between motives is

said to be smash-nilpotent if there exists n > 0 such that f⊗n = 0.

Notice that if ∼ is rational equivalence, then f being a smash-nilpotent morphism is the same

as the associated correspondence being trivial under the smash-nilpotent equivalence relation on

cycles.

Lemma 2.1.11. If f , g : M −→ N are two smash-nilpotent morphisms, then so is f + g and f − g.

Proof. For any positive integer n > 0, we have

( f + g)⊗n = ∑
i+j=n

(
n
i

)
f⊗i × g⊗j.

Since f , g are smash-nilpotent, for large enough n, the condition i + j = n forces f⊗i or g⊗j to be

zero. A similar argument can be made for f − g.

Proposition 2.1.12. Let f : M −→ N be a smash-nilpotent morphism with f⊗n ∼ 0 and

gi : N −→ M, 1 ≤ i ≤ n − 1 a sequence of morphisms. Then, f gn−1 f · · · f g1 f = 0.

Proof. Write M = (X, p, m) and N = (Y, q, n). Let X × Y × X × · · · × X × Y be the product of n

copies of X and n copies of Y. Write πi,j for the projection into the product X ×Y of the i-th copy

of X and the j-th copy of Y. With the occasional aid of the projection formula, one can write the

composition f g1 f · · · gn−1 f as

[π1,n]∗
(
π∗

n,n( f ) · π∗
n,n−1(gn−1) · π∗

n−1,n−1( f ) · · ·π∗
2,2( f ) · π2,1(g1) · π∗

1,1( f )
)

,

which vanishes since the intersection product between the π∗
i,i( f ), for 1 ≤ i ≤ n, is zero by our

hypothesis.

Corollary 2.1.13. If f : M −→ M is a smash-nilpotent morphism, then it is nilpotent with respect

to composition. Moreover, if n ∈ N is such that f⊗n = 0, then f n = f ◦ f ◦ · · · ◦ f︸ ︷︷ ︸
n times

= 0.

Proposition 2.1.14. A morphisms between finite-dimensional motives of different parities is

smash-nilpotent.
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Proof. Let f : M = (X, p, m) −→ N = (Y, q, n) be a map of motives with M even and N odd (the

reverse situation is analogous). Write d = dim(M) and l = dim(N). We will show that f⊗k = 0

for any k > dl.

Consider two partitions λ, µ ⊢ k and the composition Γeµ(Y) ◦ f⊗k ◦ Γeλ
(X). We can commute

either Γeλ
(X) or Γeµ(Y) with f⊗k. We then get

Γeµ·eλ
(Y) ◦ f⊗k = Γeµ(Y) ◦ Γeλ

(Y) ◦ f⊗k = f⊗k ◦ Γeµ(X) ◦ Γeλ
(X) = f⊗k ◦ Γeµ·eλ

(X).

But eµ · eλ is zero if µ ̸= λ. Thus, for the composition above to not be zero, it would need to

be of the form Γeλ
(Y) ◦ f⊗k = f⊗k ◦ Γeλ

(X). Writing λ = (λ1, . . . , λs), Lemma 2.1.7 implies that if

any λi > l, then TλN = 0 (recall that N is odd), so the composition Γeλ
(Y) ◦ f⊗k is zero. If this is

not the case, then the same lemma implies Tλ M = 0 and we conclude that f⊗k ◦ Γeλ
(X) = 0. As

Γeλ
(Y) ◦ f⊗k = f⊗k ◦ Γeλ

(X), we just showed that

Γeλ
(X) ◦ f⊗k = 0

for any λ. But ∑λ eλ = 1, so f⊗k must be zero.

Corollary 2.1.15. If a motive M is both even and odd, then M = 0.

Proof. Write M = (X, p, m) and apply the last proposition to the identity morphism p = idM :

M −→ M. We get idM = p = pn = 0, and by Corollary 2.1.13 we get that M = 0.

Theorem 2.1.16. Let M be a finite-dimensional motive with M = M+ ⊕ M− = M′
+ ⊕ M′

−, where

M+, M′
+ are even and M−, M′

− are odd. Then, M+
∼= M′

+ and M− ∼= M′
−.

Proof. Write M = (X, p, m) and p+, p′+, p−, p′− for the projectors associated to M+, M′
+, M−, M′

−,

respectively. Thus, p = p+ + p− = p′+ + p′−. Consider the composition

M+
p+−→ M+ ⊕ M− = M′

+ ⊕ M′
−

p′−−→ M′
−,

which is smash-nilpotent, hence nilpotent, by Proposition 2.1.14. It means that, for some

n > 0, (p′− ◦ p+)n = 0. We use the fact that p′− = p − p′+ and since p : M −→ M is the identity

morphism, we have p ◦ p+ = p+, so when expanding (p′− ◦ p+)n = 0, we get

((p − p′+)p+)n = (p+ − p′+p+)n = pn
+ − F(p+, p′+)p′+p+ = 0

for some (possibly non-commutative) polynomial F. We may rearrange this expression to

obtain pn
+ = p+ = F(p+, p′+)p′+p+. The composition p′+ ◦ p+ : M+ −→ M −→ M′

+ defines a
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morphism of motives, and so does F(p+, p′+) : M′
+ −→ M+. But we just saw that their com-

position is p+, the identity on M+. This way, F(p+, p′+) is a splitting for p′+ ◦ p+, which gives a

factorization

M′
+
∼= M+ ⊕ ker(F(p+, p′+)).

Theorem 2.1.6 implies that ker(F(p+, p′+)) is also even and that

dim(M+) + dim(ker F(p+, p′+)) = dim(M′
+) ≥ dim(M+).

Changing the roles of p+ and p′+ then gives the reverse inequality, forcing dim ker(F(p+, p′+))

to be zero, which means ker(F(p+, p′+)) is zero. We conclude that M′
+

∼= M+. Repeating the

argument for M− and M′
− finishes the proof.

Definition 2.1.17 (Surjective morphism). A morphism of motives f : M −→ N is said to be

surjective if for all Z ∈ SmProj(k), the map

C(M ⊗ h(Z)) −→ C(N ⊗ h(Z))

is surjective.

Lemma 2.1.18. Let f : M = (X, p, m) −→ N = (Y, q, n) be a morphism of motives, then the

following are equivalent.

1. f is a surjective morphism;

2. f has a right inverse (it is a split epimorphism);

Proof. (1) ⇒ (2) : using Lieberman’s identity, we see that (q×∆Y)∗(∆Y) = qT, so that qT is in the

image of q × ∆Y, which is the projector defining N × h(Y). In other words, qT ∈ C(N × h(Y)).

The surjectivity of f means there is some correspondence r ∈ Corr0(X, Y) such that

qT = ( f × ∆Y)∗(r) = r ◦ f T.

Now, let g = prTq, then we have

f ◦ g = f prTq = f rTq = q ◦ q = q,

which is the identity of N, so g is a right inverse of f .

(2) ⇒ (1) : From our assumptions, there is some g : N −→ M with f ◦ g = q = idN . Passsing

to Chow groups, we get ( f × ∆Z)∗ ◦ (g × ∆Z)∗ = idC(M⊗h(Z)), so ( f × ∆Z)∗ is surjective.
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Theorem 2.1.19. Let f : M −→ N be a surjective morphism of motives, then if M is finite-

dimensional, so is N.

Proof. Suppose M is even or odd. Lemma 2.1.18 implies that f has a right inverse g, so we split

M into the summands M = N ⊕ ker( f ), implying that N is finite-dimensional and of the same

parity as M (this is Theorem 2.1.6).

Now, let us look at the case where M = (X, p, m) = M+ ⊕ M−, where M+ = (X+, p+, m)

is even and M− = (X−, p−, m) is odd. Write N = (Y, q, n), so from Lemma 2.1.18, there is

s : Y −→ X such that f ◦ s = q. From p = p+ + p−, we get

q = ( f s)q = ( f ps)q = f p+sq + f p−sq.

We will write q+ for f p+sq and q− for f p−sq. These correspondences will be used to construct

two projectors q′+ and q′− that will give us a decomposition of N = (Y, p+, n)⊕ (Y, p−, n). First

of all, observe that q± ◦ q = q± = q ◦ q±. Also, q+ ◦ q− is nilpotent: it is equal to f p+sq f p−q and

the composition p+sq f p− is (by Proposition 2.1.14) a smash-nilpotent morphism between the

motives M− −→ M+, which have different parities. Finally, the smash-nilpotency of p+sq f p−

together with Proposition 2.1.12 guarantees that q+ ◦ q− is nilpotent.

Say (q+ ◦ q−)k = 0 and define

q′+ =
[
q − qk

−

]k
and q′− = q − q′+.

Notice that there exists a polynomial P such that for any correspondence t : Y −→ Y, we

have (q − t)k = q − P(t)t or, equivalently,

P(t)t = q − (q − t)k. (2.2)

Choosing t = q+ and taking the k-th power of equation 2.2, we get

q′+ = (q − qk
−)

k = (q − (q − q+)k)k = (P(q+)q+)k = P(q+)kqk
+ = qk

+P(q+)k, (2.3)

and making t = qk
−, we get

q′− = q − q′+ = q − (q − qk
−)

k = P(qk
−)q

k
− = qk

−P(qk
−). (2.4)
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We will also need the following observation:

0 = (q+q−)k = qk
+qk

−, (2.5)

where the first equality is restating that q+ ◦ q− is a nilpotent, which we already proved, and the

second is a consequence from the fact that q+ and q− = q − q+ commute. Now we compute

q′+qk
+ = (q − q′−)qk

+. Substituting Equation 2.4 into that, we obtain

q′+ ◦ qk
+ = (q − q′−)q

k
+ = (q − P(qk

−)q
k
−) ◦ qk

+ = qqk
+ − P(qk

−)q
k
−qk

+,

where the second term vanishes because of Equation 2.5. So q′+ ◦ qk
+ = q ◦ qk

+ = qk
+. This allows

us to conclude that q′+ is an idempotent by the following calculation:

q′+ ◦ q′+ = q′+qk
+P(q+)k = q+P(q+)k = q′+.

The first and last equalities follow from Equation 2.3, while the middle one is the fact q′+ ◦ qk
+ =

qk
+ that we just proved.

If we now compute

q′− ◦ q′− = (q − q′+)(q − q′+) = q2 − qq′+ − q′+q + q′+
2
= q − q′+ − q′+ + q′+ = q′−,

we conclude that q′− is also an idempotent. In addition, q′+ and q′− are orthogonal by construc-

tion. Finally, we define the motives N+ = (Y, q′+, n) and N− = (Y, q′−, n). It follows that

N = N+ ⊕ N−. The only thing left to check is that N+ is even and N− is odd. If we write

t = p+sq, then since q+ = f p+sq = f ◦ t, from Equation 2.3 we get

q′+ = qk
+ ◦ P(q+)k = f ◦

(
t ◦ P( f ◦ t)k

)
,

providing a right inverse for f . Lemma 2.1.18 then implies that f : M+ −→ N+ is surjective.

We already showed the part of this theorem that asserts that a motive which is the target of a

surjection from an even variety is also even. By an analogous argument, one can also prove that

N− is odd.

Corollary 2.1.20. If M ⊕ N is a finite-dimensional motive, then so are M and N.

Proof. Just apply the theorem we have just proved to the projections M ⊕ N −→ M and M ⊕

N −→ N.
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Corollary 2.1.21. Let ϕ : X −→ Y be a dominant morphism of varieties. If h(X) is finite-

dimensional, then so is h(Y).

Proof. We just need to show that Γϕ = ϕ∗ : h(X) −→ h(Y) is surjective. If ϕ is generically finite

of degree r, then ϕ∗ ◦ ϕ∗ = r∆Y, so ϕ∗ has a right inverse and, by Lemma 2.1.18, it is surjective.

In the case ϕ is not generically finite, we take a rational multisection X′ of ϕ : X −→ Y, so

ϕ|X′ : X′ −→ Y is generically finite, say of degree r. Now, for any divisor W ⊂ Y we have

ϕ∗(X′ ·ϕ∗(W)) = rW, so ϕ∗ is surjective and we conclude that h(Y) also is finite-dimensional.

So far, we have been developing the theory of finite-dimensional motives. It is time to devote

some energy to collect all the results we have established and start recognizing some finite-

dimensional motives. Unfortunately, we will not be able to explicitly say which motives are

finite-dimensional and which are not, this is still an open problem (see Conjecture 2.1). However,

we can describe some classes of motives that are finite-dimensional. We start by working out

some simple examples and build upon these examples with the tools we have been setting up.

Let C ∈ SmProj(k) be a smooth curve with at least one rational point e ∈ C. We can associate

two motives to C:

h0(C) := (C, p0 = e × C, 0) and h2(C) := (C, p2 = C × e, 0).

Together, they induce a decomposition h(C) = h0(C) ⊕ h1(C) ⊕ h2(C), where h1(C) :=

(C, p1, 0) = (C, ∆ − p0 − p2, 0). Consider the motive
∧2h0(C). By definition, it is equal to

(C2, Γe(1,1)(C) ◦ p⊗2
0 , 0) = (C2,

1
2
[
Γ1(C) ◦ p⊗2

0 − Γσ(C) ◦ p⊗2
0
]

, 0).

Computing the composition of the correspondences yields

Γ1(C) ◦ p⊗2
0 = p⊗2

0 and Γσ(C) ◦ p⊗2
0 = p⊗2

0 ,

so that Γe(1,1)(C) ◦ p⊗2
0 = 0. Thus, the motive h0(C) is even of dimension one. The same argument

can be replicated to h2(C), so we end up with the following lemma.

Lemma 2.1.22. For any smooth projective curve C ∈ SmProj(k), the motive h0(C) ⊕ h2(C) is

even of dimension 2.

Lemma 2.1.23. Let C ∈ SmProj(k) be a smooth curve of genus g. The motive h1(C) is odd of

dimension 2g.

Corollary 2.1.24. The motive h(C) is finite-dimensional for any C ∈ SmProj(k).
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Before proving this result, we will see some immediate consequences

Corollary 2.1.25. If X ∈ SmProj(k) is dominated by a product of curves, then h(X) is finite-

dimensional

Proof. This follows from combining Corollary 2.1.9 with Corollary 2.1.21.

Proposition 2.1.26. The motive h(X) is finite-dimensional for the following classes of varieties

X ∈ SmProj(k):

1. abelian varieties;

2. varieties with dimension less or equal to 3 that are rationally dominated by products of

curves;

3. K3 surfaces with Picard number 19 or 20;

4. Hilbert schemes of points of surfaces with finite-dimensional motive;

5. Fano varieties of lines of smooth cubic threefolds and fivefold;

More generally, combining our previous results with Corollary 2.1.24 shows that the subcat-

egory of Mot(k) generated by the motives of curves contains only motives of finite dimension.

All the varieties on the list above have motives that lie in this category. We will not show in

details this proposition but we will briefly explain why one should expect these varieties to have

finite-dimensional motives.

1. Symmetric powers of curves have finite-dimensional motives, since they are quotients of

products of curves. And Jacobian varieties are dominated by these symmetric powers, so

they too have finite-dimensional motive. Every Abelian variety is a quotient of a Jacobian

variety (see [Mil86]), so Abelian varieties have finite-dimensional motives.

2. The dominant rational map induces a surjective map in top Chow groups (over an appro-

priate field). This surjection allows one to write the motive of the variety as a sum of the

motive of the product of curves, the motive of some other curves, and the motive of either

a curve or a surface that has a finite-dimensional motive [Via17]. In any case, the result is

the sum of finite-dimensional motives.

3. The motive of a surface X decomposes into a sum of six motives, all finite-dimensional but

possibly one. This motive t(X) is called the transcendental part of h(X). If X is a K3 surface

with Picard number 19 or 20, it has a Nikulin involution whose quotient is birational to Y,

the Kummer surface of an abelian surface [Mor84]. Since Y has finite-dimensional motive,
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the summand t(Y) is also finite-dimensional. It turns out that t(X) ∼= t(Y), so the only

summand of h(X) that could fail to be finite-dimensional is finite-dimensional [Ped12].

4. One uses a stratification of the Hilbert scheme of points to give isomorphisms between its

Chow groups and sums of Chow groups of symmetric powers of the surface. These induce

isomorphisms on motives after the appropriate twists [CM02].

5. Given a smooth cubic hypersurface X ⊂ Pn, there is a birational map from the second

Hilbert scheme X[2] to a certain projective bundle over X [GS14]. This allows one to write

the motive of F(X) in terms of h(X) and h(X[2]), and h(X[2]) is finite-dimensional when

h(X) is too (see [Lat17] for the details). In the case dim X is 3 or 5, the Abel-Jacobi Chow

groups of X vanish, so its motive is finite-dimensional by [Via13].

It raises the question of how large can we make the subcategory of finite-dimensional mo-

tives.

Conjecture (Kimura-O’Sullivan). Every Chow motive is finite-dimensional.

We will later discuss the implications this conjecture would have for the theory of motives.

Right now, we turn our attention to the proof of the Lemma 2.1.23. Proposition 2.1.4 implies that

H(Sym2g h1(C)) =
⊕

i+j=2g

Symi Heven(h1(C))⊗
j∧

Hodd(h1(C)),

but

H(C) = H(h(C)) = H(h0(C)⊕ h1(C)⊕ h2(C)),

with H(h0(C)) = H0(C) and H(h2(C)) = H2(C), so that H(h1(C)) = H1(C). Thus, the even

part of H(h1(C)) is trivial and we get

H(Sym2g h1(C)) =
∧2g

H1(C),

which is non-zero since C has genus g.

From this calculation, we found that if h1(C) is odd, then its dimension must be at least 2g.

We will now show that Sym2g+1 h1(C) = 0. Define the projector

αn =
1
n! ∑

g∈Sn

Γg(C) ◦ p⊗n
1

of Cn. By definition, Symn h1(C) = (Cn, αn, 0), so it suffices to show that α2g+1 = 0.
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We will do so in two main steps. First, we define another projector βn and show that αn = 0

if and only if βn = 0. After that, we will prove that β2g+1 is zero by pushing forward certain

computations in CH(S2g+1C) by the projective bundle map S2g+1C −→ J(C) and performing

these calculations in CH(J(C)).

Write SnC for the symmetric power of C, i.e., the quotient of Cn by the permutation action of

Sn. Also denote by ϕn the projection ϕn : Cn −→ SnC. We define the correspondence βn as

βn =
1
n!
(ϕn)∗ ◦ αn ◦ ϕ∗

n =
1
n!
(ϕn × ϕn)∗(αn).

The first equality above is the definition of βn, while the second is Lieberman’s identity.

Lemma 2.1.27. For all n > 0, we have

1. βn is a projector of SnC;

2. αn = 1
n! ϕ

∗
n ◦ βn ◦ (ϕn)∗;

3. Symn h1(C) ∼= (SnC, βn, 0).

Proof. 1. Using the fact that ϕ∗
n ◦ (ϕn)∗ = (Γϕn)

T ◦ Γϕn = n! · Γe(n)(C), we have

βn ◦ βn =
1
n!
(ϕn)∗αnϕ∗

n
1
n!
(ϕn)∗αnϕ∗

n =
1
n!
(ϕn)∗α2ϕ∗

n =
1
n!
(ϕn)∗α ◦ ϕ∗

n = βn.

2.
1
n!

ϕ∗
n ◦ βn ◦ (ϕn)∗ =

1
n!

ϕ∗
n ◦

1
n!
(ϕn)∗ ◦ αn ◦ ϕ∗

n ◦ (ϕn)∗ = ∆Cn ◦ αn ◦ ∆Cn = αn.

3. We have the two morphisms of motives

1
n!

βn ◦ (ϕn)∗ ◦ αn : Symn h1(C) −→ (SnC, βn, 0)

and

αn ◦ ϕ∗
n ◦ βn : (SnC, βn, 0) −→ Symn h1(C),

that compose to
1
n!

βn ◦ (ϕn)∗αnαnϕ∗
nβn = βn

1
n!
(ϕn)∗αnϕ∗

n︸ ︷︷ ︸
βn

βn = βn

and

αnϕ∗
nβn

1
n!

βn ◦ (ϕn)∗αn = αn
1
n!

ϕ∗
nβn ◦ (ϕn)∗︸ ︷︷ ︸

αn

αn = αn.
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Notice that above we have used both the first and second items of this lemma, which we

have just proved. Recall that αn and βn are the identities of Symn h1(C) and (SnC, βn, 0),

respectively, so the calculations above show that they are isomorphic.

The interesting part of the above lemma is really the last item, and the first two are only

stepping stones to get there. The isomorphism between Symn h1(C) and (SnC, βn, 0) means that

in order to show that αn = 0, it is enough to demonstrate that βn = 0.

Consider the two projection maps π1, π2 : S2g+1C × S2g+1C −→ S2g+1C and the Abel-Jacobi

map ψ : S2g+1C −→ J(C), which is a projective bundle with fibers Pg+1. We can consider the

relative tautological bundle over the fibers Pg+1 of the map S2g+1C −→ J(C). Write ξ for the class

in the Chow ring of the divisor associated to this tautological bundle. We then have a projective

bundle formula on Chow rings:

CH(S2g+1C) = CH(J(C))[1, ξ, ξ2, . . . , ξg+1].

So β2g+1 ∈ CH(S2g+1C × S2g+1C) can be written in terms of pullbacks of the ξ j by the pro-

jections π1, π2 and pullbacks of some cycles in CH(J(C)) by the compositions ϕ ◦ π1 and ϕ ◦ π2.

Explicitly, there are cycles aij ∈ CH(J(C)× J(C)) such that

β2g+1 =
g+1

∑
i,j=0

(ψ ◦ π1 × ψ ◦ π2)
∗(aij) · π∗

1(ξ
i) · π∗

2(ξ
j).

We will show that the aij above are all trivial. To do so, we will need the following lemma.

Lemma 2.1.28. The intersection product π∗
1(ξ) · β2g+1 vanishes.

Proof. Let us state a helpful fact: given e ∈ C, for n > 2g − 2, the inclusion

SnC i−→ Sn+1C

(x1, . . . , xn) 7−→ (x1, . . . , xn, e)

has the property that i∗(SnC) is in the same class as the relative tautological bundle on Sn+1C

(remember Sn+1C −→ J(C) is a projective bundle). In the particular case where n = 2g, we

obtain π∗
1(ξ) = π∗

1(S
2gC × e) = S2gC × e × S2g+1C.

Using this new piece of information together with Lieberman’s identity, we can write the
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product π∗
1(ξ) · β2g+1 as

1
(2g + 1)!

π∗
1(ξ) · (ϕ2g+1 ×ϕ2g+1)∗(α2g+1) =

1
(2g + 1)!

S2gC× e× S2g+1C · (ϕ2g+1 ×ϕ2g+1)∗(α2g+1).

Now, the projection formula yields

1
(2g + 1)!

(ϕ2g+1 × ϕ2g+1)∗
[
(ϕ2g+1 × ϕ2g+1)

∗(S2gC × e × S2g+1C) · α2g+1

]
.

In the pullback (ϕ2g+1 × ϕ2g+1)
∗(S2gC × e × S2g+1C), we are viewing S2gC × e as a cycle in

CH(S2g+1C), so that ϕ∗
2g+1(S

2gC × e) = ∑j Cj × e × C2g−j. Hence,

π∗
1(ξ) · β2g+1 =

1
(2g + 1)!

(ϕ2g+1 × ϕ2g+1)∗

[
∑

j
Cj × e × C2g−j × C2g+1 · α2g+1

]
.

We will check that for each j, the sum ∑j Cj × e × C2g−j × C2g+1 · α2g+1 is zero. To see that,

recall that α2g+1 is defined as α2g+1 = 1
n! ∑h∈S2g+1

Γh(C) ◦ p⊗2g+1
1 , where p1 is the projector ∆C −

e × C − C × e. So, it is enough to prove that Cj × e × C2g−j × C2g+1 ·
(

Γh(C) ◦ p⊗2g+1
1

)
= 0 for

each 1 ≤ j ≤ 2g and h ∈ S2g+1.

By acting on the factors of ∑j Cj × e ××C2g−j × C2g+1 and Γh(C) ◦ p⊗2g+1
1 by an appropriate

element of S2g+1, we reduce the problem to show that e × C2g × C2g+1 ·
(

Γh(C) ◦ p⊗2g+1
1

)
is zero

for every h ∈ S2g+1, which follows from the computation

(e × C) · p1 = (e × C) · ∆C − (e × C) · (e × C)− (e × C) · (C × e) = 0

and the fact that we are working with an adequate equivalence relation.

Proof of Lemma 2.1.23. Recall that

β2g+1 =
g+1

∑
i,j=0

(ψ ◦ π1 × ψ ◦ π2)
∗(aij) · π∗

1(ξ
i) · π∗

2(ξ
j),

then we can do an inductive argument as follows. First, notice that since β2g+1 is a cycle of

codimension 2g + 1 in SnC × SnC and the fibers of ψ ◦ π1 × ψ ◦ π2 have dimension 4g + 2, a

codimension counting shows that ag+1,g+1 = 0. Now, suppose we have shown that aij = 0

for all g + 1 ≥ i, j > k. Then multiply β2g+1 by π∗
1(ξ

g+1−k) · π∗
2(ξ

g−k) and push it forward by
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ψ ◦ π1 × ψ ◦ π2, so we get

(ψ ◦ π1 × ψ ◦ π2)∗
(

β2g+1 · π∗
1(ξ

g+1−k) · π∗
2(ξ

g−k)
)

=(ψ ◦ π1 × ψ ◦ π2)∗

[
k

∑
i,j=0

(ψ ◦ π1 × ψ ◦ π2)
∗(aij) · π∗

1(ξ
g+1−k+i) · π∗

2(ξ
g−k+j)

]

=
k

∑
i,j=0

aij · (ψ ◦ π1 × ψ ◦ π2)∗
[
π∗

1(ξ
g+1−k+i) · π∗

2(ξ
g−k+j)

]
,

where we used the projection formula to get get from the second to the last line. But π∗
1(ξ

l) is

non-zero only if l = g + 1, so

(ψ ◦ π1 × ψ ◦ π2)∗
[
π∗

1(ξ
g+1−k+i) · π∗

2(ξ
g−k+j)

]
can only be non-zero when i = k and j = k + 1. When that happens,

(ψ ◦ π1 × ψ ◦ π2)∗
[
π∗

1(ξ
g+1−k+i) · π∗

2(ξ
g−k+j)

]
= 1,

so all we are left with is aij. Consequently,

aij = (ψ ◦ π1 × ψ ◦ π2)∗
(

β2g+1 · π∗
1(ξ

g+1−k) · π∗
2(ξ

g−k)
)

.

Finally, Lemma 2.1.28 implies that aij is zero. Changing the roles of i and j allows one to

show the result for i, j ≥ k with not both equal to k. To get the result for i = j = k, one can now

replicate the argument but multiply β2g+1 by π∗
1(ξ

g+1−k) · π∗
2(ξ

g+1−k) before pushing it forward

by ψ ◦ π1 × ψ ◦ π2. That concludes the inductive step.

2.2 Finite dimensionality in the theory of motives

In this last section, we will compile relations of the Kimura-O’Sullivan conjecture with other

problems in the theory of motives and related topics. First of all, let us remember what the

conjecture says.

Conjecture (Kimura-O’Sullivan). Every Chow motive is Kimura finite-dimensional.

Let us list some simple consequences of this conjecture. In the list below, we work with the

category of motives built from rational equivalence.

• If M = (X, p, m) is a finite-dimensional motive with p is numerically trivial, then M = 0;
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• any morphism f : M −→ M that is numerically trivial (as a correspondence on M × M) is

also nilpotent.

• if M is finite-dimensional, its dimension is equal to the dimension of its cohomology:

dim(M) = dim(H(M));

• let X be a variety whose cycle class maps (with coefficients in the base field k) CHi(X)k −→

H2i(X) is a surjection for all i. If M is finite-dimensional, then the cycle class maps are also

injective;

Let us talk about more elaborated repercussions now. When we defined the cohomology of a

motive, we mentioned the problem of lifting the grading on H(h(X)) = H(X) to motives hi(X)

such that h(X) =
⊕

i hi(X). This idea is embodied by the following definition.

Definition 2.2.1 (Chow-Kunneth decomposition). Let X ∈ SmProj(k) be a smooth projective va-

riety and write ∆i
X for the components of γ(∆X) ∈ H(X × X) under the Kunneth decomposition.

We say that X admits a Chow-Kunneth decomposition if there are projectors pi on X such that

1. ∑i pi = ∆X;

2. the pi are orthogonal idempotents;

3. γ(pi) = ∆i
X.

Conjecture CK(X). Every variety admits a Chow-Kunneth decomposition.

Notice that, in particular, Conjecture CK(X) implies Conjecture C(X). The converse holds

whenever h(X) is finite-dimensional.

Theorem 2.2.2. Let X ∈ SmProj(k) be a smooth projective variety. If h(X) is a finite-dimensional

motive and Conjecture C(X) holds, then Conjecture CK(X) also holds.

During our discussion about the finite-dimensionality of curves, we showed, for example,

that Conjecture CK(X) holds when X = C is a curve. More generally, it is also true for surfaces

and abelian varieties. Conjecture CK(X) is only one piece of the so-called Murre conjecture,

which prescribes a certain filtration on Chow groups.

Conjecture (Murre’s conjecture). Let X ∈ SmProj(k) be a smooth projective variety. We say that

Murre’s conjecture holds for X if Conjecture CK(X) holds and the filtrations defined by

Fk CHj(X) = ker(p2j) ∩ ker(p2j−1) ∩ · · · ∩ ker(p2j+1−k) ⊂ CHj(X)

satisfy the conditions
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1. F1 CHj(X) = CH(X)hom := {z ∈ CHj(X) : Z ∼hom 0};

2. for any k and j, the group Fk CHj(X) does not depend on the choice of the projectors pi

giving the Chow-Kunneth decomposition of X.

Interestingly, Murre’s conjecture for every X ∈ SmProj(k) is equivalent to the Bloch-Beilinson

conjectures on the filtrations of Chow groups. In addition, if they are true, Bloch-Beilinson’s fil-

tration coincides with the filtration defined above.

Another interesting relation between finite-dimensionality of motives and other open prob-

lems in algebraic geometry comes when we look at varieties defined over finite fields. In this

case, Kahn showed the following theorems.

Theorem 2.2.3 ([Kah03]). Given a variety X ∈ SmProj(Fq) whose associated motive h(X) is

finite-dimensional, Tate’s conjecture implies the Beilinson conjecture for X.

Theorem 2.2.4 ([Kah03]). The following are equivalent:

1. Tate’s conjecture is true for every smooth projective variety and Kimura-O’Sullivan’s con-

jecture holds;

2. Tate’s conjecture is true for every abelian variety and Mot(Fq) is equal to the subcategory

generated by curves.

The second item implies, but is stronger than, Kimura-O’Sullivan conjecture. We have al-

ready seen that the subcategory generated by curves only contains motives of finite dimension.

So if this subcategory contains all motives, of course Kimura-O’Sullivan conjecture holds, but in

principle: it could be the case that every motive is finite-dimensional and some of them are not

generated by motives of abelian varieties. Finally, we have the following theorem relating Tate’s

conjecture, Kimura finiteness and K-theory.

Theorem 2.2.5 ([Kah03]). Let X ∈ SmProj(X) be a smooth projective variety such that h(X) is

finite-dimensional. If Tate’s conjecture holds for X, then all higher algebraic K-groups of X with

rational coefficients vanish: Kk(X)⊗ Q = 0 for k > 0.

Changing the focus now (not restricting ourselves to finite fields anymore), we talked about

conjecture D(X) when discussing the standard conjectures. There is a stronger conjecture that

says numerical equivalence coincides with smash-nilpotent equivalence (recall that a cycle Z ∈

CH(X) is smash-nilpotent if Zn ∈ CH(Xn) is trivial for some n > 0).

Conjecture (Voevodsky). For any X ∈ SmProj(k), cycles on X up to numerical equivalence and

smash-nilpotent equivalence coincide.
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Homological equivalence sits between smash-nilpotent equivalence and numerical equiva-

lence, so Voevodsky’s conjecture implies conjecture D(X) for all X. We also have the following

theorem.

Theorem 2.2.6. Voevodsky’s conjecture implies Kimura-O’Sullivan’s conjecture.

The conjecture of Kimura-O’Sullivan, or more precisely the notion of finite-dimensionality,

also relates to Bloch conjectures in the case of surfaces.

Theorem 2.2.7. Given a smooth projective surface S, if h(S) ∈ Motrat(S) is finite-dimensional,

then Bloch’s conjecture holds for S.

Going on with the applications of the theory of finite-dimensional motives, we can bring up

the problem of classifying motivic zeta functions that are rational. The Grothendieck ring of

varieties K0(Var) is defined to be the free abelian group over isomorphism classes of varieties

quotiented by the equivalence relation of scissors congruence, that is,

[X] ∼ [X \ U] + [U] if U is an open subvariety of X.

We can endow K0(Var) with a ring structure by declaring [X] · [Y] = [X × Y].

The motivic zeta function is the power series

Z([X], t) = 1 + [X] · t + [S2(X)] · t2 + [S3(X)] · t3 + · · · .

For example, when X is a smooth projective curve of genus g, its zeta function becomes

Z([X], t) =
P(t)

(1 − t)(1 − [An] · t)
,

where P(t) is a polynomial of degree 2g. In particular, Z(X, t) is a rational function. It was

conjectured by Kapranov that this is the case for every variety and later Larsen and Lunts proved

(see [LL03]) this is not the case.

Now, observe that K0(Mot(k)) is a commutative monoid, so we may apply the usual con-

struction of the Grothendieck group (in this case a ring due to the tensor product in Mot(k)),

yielding the ring K0(Mot(k)). Concretely, its elements are classes of motives up to the relation

[M] ∼ [N] + [L] if M = N ⊕ L.
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Then, one may ask whether the zeta function on motives

Z([M], t) = 1 + [M] · t + [Sym2 M] · t2 + [Sym3 M] · t3 + · · ·

is rational. We don’t know, for example, if all motives have rational zeta function, but it is the

case for finite-dimensional motives.

Theorem 2.2.8. If M is finite-dimensional, then Z(M, t) is rational.

We would like to finish this section with some comments on how things work with mixed

motives. For mixed motives, it is not true that every motive is Kimura finite-dimensional. In

reality, Schur finiteness is better suited for this setting. Recall that a (mixed) motive M is Schur

finite-dimensional if there λ such that Sλ(M) = 0. Kimura finite-dimensional objects are always

Schur finite. The reason Schur finiteness is more appropriate is because it behaves nicely with

respect to the triangulated structure on the category of mixed motives. More precissely, if three

mixed motives M, N, L fit into a distinguished triangle

M −→ N −→ L −→ ΣM

in Voevodsky’s triangulated category, and two of M, N, L are Schur finite-dimensional, then also

is the third. Schur finiteness relates to important open question on the theory of mixed mo-

tives. For instance, the work of Ayoub on the conservativity conjecture (see [Ayo07]) links it to

conditions of Schur finiteness of certain mixed motives.
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[Gro] Alexander Grothendieck. Récoltes et semailles. URL: https://web.ma.utexas.edu/

users/slaoui/notes/recoltes_et_semailles.pdf.

[Gro58] Alexander Grothendieck. “Sur une note de Mattuck-Tate”. In: Journal für die reine und

angewandte mathematik 1958 (1958), pp. 208–215.

[GS14] Sergey Galkin and Evgeny Shinder. The Fano variety of lines and rationality problems

for a cubic hypersurface. 2014. URL: https://arxiv.org/abs/1405.5154.

[Ivo06] Florian Ivorra. Finite dimensional motives and applications following S.-I. Kimura, P.

O’Sullivan and others. 2006. URL: https://perso.univ- rennes1.fr/florian.

ivorra/IHESLecture.pdf.

[Jan92] Uwe Jannsen. “Motives, numerical equivalence, and simplicity”. In: Inventiones Math-

ematicae 107 (1992), pp. 447–452.

[Jon07] Johan de Jong. Weil cohomology theories. 2007. URL: https://www.math.columbia.

edu/~dejong/seminar/note_on_weil_cohomology.pdf.
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[Lie68] David Lieberman. “Numerical and homological equivalence of algebraic cycles on

hodge manifolds”. In: American journal of mathematics 90 (1968), pp. 366–374.

42

https://web.ma.utexas.edu/users/slaoui/notes/recoltes_et_semailles.pdf
https://web.ma.utexas.edu/users/slaoui/notes/recoltes_et_semailles.pdf
https://arxiv.org/abs/1405.5154
https://perso.univ-rennes1.fr/florian.ivorra/IHESLecture.pdf
https://perso.univ-rennes1.fr/florian.ivorra/IHESLecture.pdf
https://www.math.columbia.edu/~dejong/seminar/note_on_weil_cohomology.pdf
https://www.math.columbia.edu/~dejong/seminar/note_on_weil_cohomology.pdf


BIBLIOGRAPHY

[LL03] M. Larsen and V. Lunts. “Motivic measures and stable birational geometry”. In:

Moscow Mathematical Journal 3 (2003), pp. 85–95.

[Mil86] James Milne. “Jacobian varieties”. In: Arithmetic geometry. Ed. by Gary Cornell and

Joseph Silverman. Springer, 1986, pp. 167–212.

[MNP13] Jacob Murre, Jan Nagel, and Chris Peters. Lectures on the theory of pure motives. Vol. 61.

University Lecture Series. American Mathematical Society, 2013.

[Mor84] David Morrison. “On K3 surfaces with large Picard number”. In: Inventiones mathe-

maticae 75 (1984), pp. 105–121.

[MVW06] Carlo Mazza, Vladimir Voevodsky, and Charles Weibel. Lecture notes on motivic coho-

mology. Vol. 2. Clay Mathematics monographs. American Mathematical Society and

Clay Mathematics Institute, 2006.

[NP07] Jan Nagel and Chris Peters. Algebraic cycles and motives. Vol. 1. London Mathematical

Society lecture note series. Cambridge University Press, 2007.

[NP13] Jan Nagel and Chris Peters. Algebraic cycles and motives. Vol. 2. London Mathematical

Society lecture note series. Cambridge University Press, 2013.

[Ped12] Claudio Pedrini. “On the finite dimensionality of a K3 surface”. In: Manuscripta

Mathematica 138 (2012), pp. 59–72.

[Pri20] Jonathan P. Pridham. “Tannaka duality for enhanced triangulated categories I: re-

construction”. In: Journal of Noncommutative Geometry 14 (2020), pp. 591–637.

[Sch] Winfried Scharlau. Spirituality. URL: https://webusers.imj- prg.fr/~leila.

schneps/grothendieckcircle/Spirituality/.

[Sch94] A. J. Scholl. “Classical motives”. In: Proceedings of symposia in pure mathematics. Ed. by

Uwe Jannsen, Steven Kleiman, and Jean-Pierre Serre. Vol. 55.1. American Mathemat-

ical Society, 1994, pp. 163–187.

[Via13] Charles Vial. “Projectors on the intermediate algebraic Jacobians”. In: New York jour-

nal of mathematics 19 (2013), pp. 793–822.

[Via17] Charles Vial. “Remarks on motives of abelian type”. In: Tohoku Mathematical Journal

69 (2017), pp. 195–220.

[VSF11] Vladimir Voevodsky, Andrei Suslin, and Eric Friedlander. Cycles, transfers, and mo-

tivic homology theories. Vol. 143. Annals of mathematics studies. Princeton University

Press, 2011.

43

https://webusers.imj-prg.fr/~leila.schneps/grothendieckcircle/Spirituality/
https://webusers.imj-prg.fr/~leila.schneps/grothendieckcircle/Spirituality/


BIBLIOGRAPHY

[Xu18] Ze Xu. “Algebraic cycles on a generalized Kummer variety”. In: International Mathe-

matics Research Notices 2018 (2018), pp. 932–948.
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