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1 Introduction

In broad terms, elliptic cohomology theories are a class of generalized coho-
mology theories associated with elliptic curves. They are oriented cohomology
theories, which provide us, between other things, with the notion of a genus
(plural is genera). Genera are homomorphisms from some cobordism ring, and
the genera arising from elliptic cohomology theories are the elliptic genera.

Historically, however, elliptic genera came before elliptic cohomology and a
solid framework to properly unify all these ”elliptic things” required some years
of effort and some remarkable insights. These notes intend to discuss some
aspects of this process, with a focus on some observations made by Witten
concerning elliptic genera and index theory in loop spaces, as well as how it
impacted the understanding of elliptic cohomology and the next developments
in the field.

We take, despite the historical ordering of the facts discussed here, a rather
modern approach to the topic. That means we draw intuition and directions
from more contemporary approaches, placing historical remarks when relevant.

2 Elliptic cohomology theories

We start with a simple statement: ”Elliptic cohomology theories are generalized
cohomology theories”. Of course they are more than that. Not all cohomology
theories are elliptic, but this statement at least provide some context for what
to expect.

Perhaps a good question to ask right now could be ”there are many general-
ized cohomology theories around, why should I care about elliptic ones instead
of any other?”.

The answer for that comes in two pieces. First, you should also care about
other cohomology theories, not just elliptic ones. Maybe not all of them are
interesting, but there is a fair amount of interesting ones. Second, we have
multiple sources source of interest for elliptic cohomology theories that could
support the position that they are among the interesting ones.
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A primary reason is the fact that they correspond to the second level in the
chromatic filtration. In short terms, there is a correspondence between formal
group laws over suitable rings to (complex oriented) cohomology theories and the
height filtration of formal group laws induces a similar filtration on cohomology
theories, the chromatic filtration. This is the content of chromatic homotopy
theory. For example, in the 0-th level of the chromatic filtration, one may find
ordinary cohomology theory, while the first level contains complex K-theory.
The existence of a classifying ring of formal group laws yields a ”universal”
complex-oriented cohomology theory, which turns out to be complex cobordism.

Elliptic cohomology theories live in the second level of the chromatic fil-
tration, so it is the ”next simple thing” after ordinary cohomology theory and
complex K-theory (and some Morava K-theories). Another reason to care about
Elliptic cohomology may be its recent appearance in derived algebraic geometry,
although this is a bit distant from the topics we will be discussing here. A third
reason lies in its applicability in mathematical physics, particularly in string
theory, which was a major motive for Witten to even think about these things.

We shall start by properly defining what is an elliptic cohomology theory.
First, we establish some necessary concepts.

Recall that a cohomology theory E is multiplicative if it allows for a graded
ring structure E•. In particular, it has a unit living in E0 and the spectrum
representing E promotes to a ring spectrum.

Definition 1. Given a multiplicative generalized cohomology theory E, consider
the inclusion

CP 1 ↪→ CP∞

and the induced map on reduced second cohomology

Ẽ2(CP∞) → Ẽ2(CP 2).

A complex orientation for E is an element x ∈ Ẽ2(CP∞) which is mapped
to the unity 1 ∈ Ẽ2(CP 1) ∼= Ẽ2(S2) = Ẽ2(Σ2S0) ∼= Ẽ0(S0) = E0(S0, {∗}) =
E0(∗). In such situation, E is said to be a complex oriented cohomology
theory.

We will, for the rest of this text, omit the adjective ”complex” from ”complex
oriented”, as we will not deal with or care about any other kind of orientation.

Remark. Not every (multiplicative) generalized cohomology theory admits a
complex orientation. The ones that do may receive the adjective ”orientable”
and become orientable cohomology theory. Saying that a cohomology theory is
oriented implicitly assumes a previous choice of orientation.

From a complex orientation, one can build a genus for the cohomology
theory E. By genus here, we mean a ring homomorphism from the complex
cobordism ring MU• to E•, that is, a ring spectrum map MU → E. A precise
statement would be
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Theorem. Ring spectrum maps MU → E are in bijection with complex orien-
tations for E.

The way one would go about proving it is by showing the universality of
cobordism as a complex-oriented cohomology theory. More precisely, one builds
a universal complex orientation on MU and for each ring spectrum map MU →
E, pushforward the orientation on MU to obtain a complex orientation on E.
The important fact for us here is that complex orientations naturally give us
some notion of genera.

The last ingredient we need is a small discussion about group laws. We
define a formal group law below.

Definition 2. A formal group law over a ring R is a formal power series
F ∈ R[[x, y]] with coefficients in R satisfying:

1. F (x, 0) = x;

2. F (x, y) = F (y, x);

3. F (x, F (y, z)) = F (F (x, y), z).

Some words about the first property may be useful to get some intuition.
The first property stipulates that F has no term in degree 0 and the terms of
degree higher than 1 always have both factors x and y. Simple examples of
formal power series include

Example 1. F (x, y) = x+ y.

Example 2. F (x, y) = x+ y + c · xy for some coefficient c ∈ R.

We can define maps between formal group laws:

Definition 3. If F and G are formal group laws over R, a homomorphism
from F to G is a power series f with coefficients in R such that

f(F (x, y)) = G(f(x), f(y)).

We say f is an isomorphism if it has an inverse (in the power series sense)
which is also a homomorphism.

A natural source of formal group laws is elliptic curves. Elliptic curves have a
group structure and we can derive a formal group law from it. One can consider
the Taylor expansion around the origin of the addition law (in coordinates),
which yields a power series. This is the formal group law associated with an
elliptic curve.

What we need to keep in mind now is that there is a functorial way to
assign cohomology theories to formal group laws. This is via the Landweber
exact functor MU• ⊗L(−). The important piece of information is that given a
formal group law over a graded ring R, the formal group law induces an algebra
structure on R over the Lazard ring L so we tensorize MU• and R over L. This
establishes a correspondence between complex-oriented cohomology theories and
suitable formal group laws. We are now ready to define elliptic cohomology.
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Definition 4. An Elliptic cohomology theory is a generalized multiplicative
cohomology theory E such that

• E is even and periodic, that is, En(∗) = 0 for n odd and there is some
invertible element β ∈ E2(∗). This forces E to be complex oriented (so it
has a formal group law associated);

• E0(∗) ∼= R for a commutative ring R;

• There is an elliptic curve C over R such that the formal law associated to
E is isomorphic to the one associated with C.

The definition above says that the ”generalized” E-Chern classes built on
E (the Conner-Floyd Chern class) behave as sum on an elliptic curve. A more
precise way to phrase this is to say that if F is the formal group law associated
to E and c1 is the first Conner-Floyd Chern class of E, then for any line bundles
L1, L2, we have c1(L1 ⊕ L2) = F (c1(L1), c1(L2)). Interestingly, if F is like in
Example 1, then E is ordinary cohomology theory. If F is the same as in
Example 2 with the constant c = 1, then E is K-theory.

3 Elliptic genera

Another thing called genus was going around before the formalization of the
genus associated with a complex oriented cohomology theories. A genus in this
sense is simply a ring homomorphism MSO• → R to some ring R. Unpacking
this idea we may organize the definition in the following way.

Definition 5. An R-valued genus is a ring homomorphism ϕ : MSO• → R,
that is, a rule assigning to each manifold M , an element ϕ(M) ∈ R such that
for any two manifolds M,N , we have

• ϕ(M ⊔N) = ϕ(M) + ϕ(N);

• ϕ(M ×N) = ϕ(M)× ϕ(N);

• If M and N are orientably cobordant, then ϕ(M) = ϕ(N).

Remark. One could modify the definition of genus above by changing the ring
MSO• to any other cobordism theory, yielding different notions of genus that
relate to different adjectives for cohomology theories. Indeed, some would call
our definition ”oriented genus” instead of simply ”genus”.

From Thom’s calculation of the rationalization of MSO•, we have MSO• ⊗Q ∼=
Q[CP 2,CP 4, . . . ], so rationally, one can represent a genus by a polynomial series
using the classes of the projective spaces CP 2n. An advantage of rationalizing
the oriented cobordism ring is that we get corresponding power series depending
only on the classes of projective spaces.
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To any formal group law F over a commutative Q-algebra R, there is a
logarithm associated. This is a power series logF such that logF (F (x, y)) =
logF (x) + logF (y). So we have a power series associated to any genus ϕ, which
is determined by the values of ϕ on the projective spaces. This power series,
which we will call logϕ, is given by applying ϕ to the coefficients of the logarithm
of the universal formal group law. Running the calculations gives

logϕ(x) =
∑ ϕ([CP 2n])

2n+ 1
x2n.

Dually, we have the characteristic series associated with ϕ. If expϕ denotes
the power series which is inverse to logϕ, then we have the characteristic series
associated to ϕ, given by

Kϕ(x) =
x

expϕ(x)
.

The relevance of such notion is made clear by observing that the product of
the evaluations of Kϕ in Chern roots gives a characteristic class.

Example 3. The Todd genus is the genus whose characteristic class is given
by

Kϕ(x) =
x

1− e−x
.

For a vector bundle P with Chern roots αi, the Todd class of P is the product

Td(P ) =
∏
i

Kϕ(αi).

Example 4. The Â genus is the genus whose characteristic series is given by

Kϕ(x) =
x/2

sinh(x/2)
=

x

ex/2 − e−x/2
.

Different genera may behave differently with respect to specific kinds of fiber
bundles. In particular, if P → M is a fiber bundle with fiber V , then the formula

ϕ(P ) = ϕ(M)ϕ(V ) (1)

whenever

• ϕ is the Â genus and F is a spin manifold;

• or ϕ is the signature genus and the action of π1(M) on H∗(V ) is trivial
([CHS57]).

Ochanine and Taubes classified the genera for which Equation 1 holds when
both conditions above are simultaneously satisfied. This is expressed in the
following theorem.
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Theorem 6. Given ϕ a C-valued genus. Then

ϕ(P ) = ϕ(M)ϕ(V )

holds for any fiber bundle V → P → M where V is a spin manifold and the
fundamental group of M acts trivially on V if and only if the logarithm series
associated with ϕ is an elliptic integral

logϕ(x) =

∫ x

0

1√
1− 2δt2 − ϵt4

dt. (2)

In such case, ϕ is said to be an elliptic genus.

The signature and A-hat genus can be seen as degenerate cases of elliptic
genera. They correspond precisely to the pairs of values (δ, ϵ) that make the
discriminant of the polynomial inside the square root in Equation 2 to be zero.

An interesting fact about genera is that they are all evaluations of char-
acteristic classes on fundamental classes. By the splitting principle, to define
a characteristic class, it is enough to do so in line bundles. So if Kϕ is the
characteristic series of the genus ϕ, we let kϕ(L) = Kϕ(c1(L)).

Theorem 7. Given a genus ϕ and its characteristic class kϕ, we have

ϕ(M) = ⟨kϕ(TM), [M ]⟩

The Theorem 7 above will be extremely important later, as the right hand
side is included in Atiyah-Singer Index theorem.

We finish this section with some quick words concerning the universal elliptic
genus. A ”formula” for the characteristics series of the universal elliptic genus
is well known. For the braves who want to take a look at that, it is

Kϕ(x) =
x/2

sinh(x/2)

∏
n≥1

(1− qn)2

(1− qnex)(1− qne−x)
,

where q above is related with a certain modular form built over Equation 2.
It may be really hard to guess what kind of properties to expect from the

universal genus straight from its formula. Thankfully, we have another approach
available, based on some insights by Witten in [Wit88].

4 Dirac Operators in Loop spaces

For a moment, let us discuss the index of certain Dirac operators in loop spaces.
The reason why we will do that is because it is possible, considering the index
of such operators, to build a universal elliptic genus, which is called the Witten
genus, after (unsurprisingly) Witten. The next theorem stablishes when does
LM , the free loop space of M , has a spinor bundle, which will be useful to
define a Dirac operator on LM .
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Theorem 8. Given a manifold M , LM has a spinor bundle if and only if the
first Pontryagin class p1(M) of M vanishes.

Under the conditions of this theorem, we can build a Dirac operator on LM ,
although the construction is complicated. The basic idea is to use the embedding
of M into LM via the constant loops to split the tangent bundle TLM = TM⊕
NM into components corresponding to the tangent bundle of M and its normal
bundle. Then, one can use the spin structure on M to obtain a Dirac operator
corresponding to the first component. The really involving part is building the
Dirac operator corresponding to the second component, which needs a great
deal of representation theory of Lie superalgebras. After conveniently tensoring
these Dirac operators, we obtain an honest Diract operator

DM : Γ(S+) → Γ(S−)

over the spinor bundle in LM . Furthermore, this Dirac operator commutes
with the S1 action on LM given by translation along a loop. Pragmatically, that
means we can do ”things” S1-equivariantly. The ”things” we will be particularly
interested is applying the Atyiah-Singer Index Theorem.

A modification on the construction, namely, tensorizing with another bundle
P → LM yields a twisted Dirac operator

DM
P : Γ(S+ ⊗ P ) → Γ(S− ⊗ P ).

The interesting case for us is the case where P = S, so DM
S is an S1-

equivariant twisted Dirac operator on LM and we may take its S1-index.

Remark. In full generality, one doesn’t need a spin bundle S over the whole
LM , but only the existence of the a product bundle S⊗S with a grading S⊗S±.
The construction of DM

P has some extra caveats in this case.

Applying the S1-equivariant Index Theorem for DM
S and running the calcu-

lations on the topological side of the theorem connects the index of DM
S to the

right hand side of the equation present in Theorem 7 for some elliptic genus.
A closer inspection of the formulas makes clear that this elliptic genus is the
universal one. In more precise terms, we have the theorem below.

Theorem 9. If ϕ denotes the universal elliptic genus, then

ϕ(M) = C · IndS1 DM
S .

where C is a ”coherence” constant coming up from the fact that elliptic
genera form modular forms.

This is a surprising result: the universal elliptic genus, up to a rescaling,
is given by the indices of Dirac operators on loop spaces. This fact helps to
explain a lot of observed qualitative behaviors of the universal elliptic genus,
like a certain similarity with what is expected from characters of representations
of Diff(S1). Witten’s paper ([Wit88]) is basically a suggestion of the procedure
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to define our relevant Dirac operators on LM with a proposal of an explanation
of why certain properties of the universal elliptic genus, as the one we just
commented about, hold.

The explanations are mostly heuristic, though, and the general line is to lift
the interesting properties from structures that exist in LM to things happen-
ing in the genus. More specific examples of such ”lifts” comprehend the conse-
quences of the existence of a Diff(S1) action on LM given by reparametrization.
The passage to the elliptic genus world involves some constructions using con-
formal quantum field theory and classic complex analytical results. Due to this
work, the value expressed in the equation present in Theorem 9 is called the
Witten genus.

5 Elliptic cohomology today

Elliptic cohomology theories are related with many different areas of mathe-
matics. Nowadays, we have two strong trends related with elliptic cohomology
lying in string theory and derived algebraic geometry.

Maybe the most outstanding interest in string theory is the unsolved Stolz
Conjecture. The Stolz conjecture says that if a string manifold has Ricci positive
curvature, then its Witten genus is trivial.

Another related hot topic is the cohomology theory known as tmf , which
stands for topological modular forms. This is, in some sense, the universal
elliptic cohomology theory, with the license of not being an actual elliptic coho-
mology theory. As we have a universal elliptic genus, we have a universal elliptic
cohomology, and one ”corresponds” to the other. The issue is that tmf is not
really an elliptic cohomology theory: there is no elliptic curve associated. The
reason, or a reason, is that tmf is built as a certain colimit over all the elliptic
curves, organized in the moduli stack of elliptic curves. However, this colimit
does not live anymore in the moduli stack of elliptic curves, but instead in its
Deligne-Mumford compactification.

Physically, we have a universal spin K-orientation known as Atiyah-Bott-
Shapiro orientation. A spin K-orientation here means a homomorphism from
the spin bordism ring MSpin to the K-theory ring. The genus associated with
this orientation is the A-hat genus. When one goes up from spin structures to
string structures, one can ask what happens with this universal K-orientation,
or more precisely, what is the string-analogous of this universal orientation -
universal genus relation.

The answer to that question is to change the domain of the homomorphism
from MSpin to MString and replace K theory by tmf . In this case, instead of
the A-hat genus, we end up with the Witten genus.
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