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The Conley index is a topological tool for studying dynamical systems. It
allows us to analyze flows in topological spaces, gathering information about
their invariant sets. This information will be given in terms of (co)homology
and homotopy. This text aims to give a very basic introduction to the Conley
index theory. We are going to build the index and look at some of its most
interesting or useful properties.

The core concept of continuous dynamical systems is the flow. It is defined
as follows.

Definition 1. A flow in a topological space X is a continuous function ϕ :
R×X → X satisfying the following properties.

• ϕ(0,−) is the identity in X;

• ϕ(t, ϕ(s, x)) = ϕ(t+ s, x) for all x ∈ X and for all t ∈ R.

We now can define the orbit of a point x under a flow ϕ to be the set ϕ(R, x).
Additionally, we say that a subset S ⊂ X is an invariant set if ϕ(R, S) = S.
Generally, it is not easy to study dynamical systems just by manipulating the
flow that defines it, so we go for a more qualitative approach. Invariant sets are
one of the interesting things in a dynamic system we would like to know more
about. The index is useful to study such sets, specifically when talking about
isolated invariant sets, whose definition is given below.

Definition 2. An isolated invariant set (IIS) is an invariant set S that admits
a compact neighborhood N such that

S = Inv(N, ϕ) := {x ∈ N : ϕ(R, x) ⊂ N} ⊂ Int(N).

In this case, we call N an isolating neighborhood for S.

This definition captures the setup where no orbit that touches the boundary
of N is contained in N , that is, the orbit must leave N in the future or in the
past. It may return to N after leaving, but must spend some time out of N .
Intuitively, the isolating neighborhood separates the invariant set from the rest
of the dynamical system as objects outside the isolating neighborhood ”don’t
interact” with the IIS. Indeed, we further will be interested in the internal
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dynamics of the isolating invariant set and we will see we don’t need outside
data for studying it.

Let us look at some examples of isolated invariant sets.

Example 3. Consider the flow ϕ : R× R → R defined by ϕ(t, x) = x · et. One
can check it is, indeed, a flow. In addition, the point x = 0 is a fixed point. A
quick analysis shows that if x ̸= 0, the orbit of x will move away from 0. We
can synthesize this dynamical system by the following portrait.

In this case, {0} is an isolated invariant set, with any of its compact neigh-
borhoods being admissible isolating neighborhoods.

Example 4. A more interesting (and a classical) example is the flow ϕ : R ×
R2 → R2 defined by ϕ(t, (x, y)) = (x · et, y · e−t).

This flow describes the solutions for the system of differential equations{
x′ = x

y′ = −y

We can draw the following portrait to represent the system:

.

The origin is an isolated invariant set, isolated by any of its compact neigh-
borhoods.

It is an upgrade of the previous example, but a new feature starts to appear:
hyperbolicity. A great part of our interest in this flow is due to the fact that
(0, 0) is a hyperbolic point, one of the simplest examples we can build.

The definition of the Conley index relies on the concept of an index pair,
whose definition follows below.
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Definition 5. If S is an IIS in a flow ϕ, an index pair for S is a pair of compact
sets (N1, N2), with N2 ⊂ N1 such that

1. S = Inv(N1 \N2) and N1 \N2 is a neighborhood of S;

2. if x ∈ N2, then ϕ([0, t], x) ⊂ N1 ⇒ ϕ([0, t], x) ⊂ N2;

3. for all x ∈ N1 and for all t > 0, if ϕ(t, x) ̸∈ N1, then there is t′ ∈ [0, t] such
that ϕ(t′, x) ∈ N2 and ϕ([0, t′], x) ⊂ N1.

In general terms, the first property state that N1 \N2 is an isolating neigh-
borhood for S, while the last two properties say that a point in N whose future
orbit leaves N must pass by L first, and will not leave L unless it leaves N at
the same time.

Now we have the following theorem due to Conley.

Theorem 6 (Conley 1976). Every isolated invariant set has an index pair.

With everything set up right now, we can define the Conley index.

Definition 7. Given an index pair (N1, N2) for an IIS S in a flow ϕ, we define
the homotopy Conley index of S as

h(S, ϕ) = [(N1/N2), [N2]],

the homotopy type of the pointed space ((N/L), [L]).
We also define the homology Conley index of S as

CH•(S, ϕ) = H•(N1/N2, [N2]).

We will often omit the flow ϕ when it is clear what it must be.

There is also the cohomological index, defined by replacing homology with
cohomology. Conley shows that the index is independent of the choice of the
index pair, so that it is well-defined.

The philosophy of the Conley index is that invariant sets are very hard to
be studied directly. So we use isolating neighborhoods to do so. The usefulness
of the index is given by its properties, which we will explore now.

First, if S = ∅, then (∅, ∅) forms an index pair for S. Hence, if S = ∅, the
index is trivial. The contrapositive gives us the ability to detect invariant sets.

Theorem 8. If h(S) ̸= 0, then S ̸= ∅.

The same holds for the homological or cohomological index. We also a
homotopy invariance of the index, in the following sense.

Theorem 9. Let {ϕλ}, λ ∈ [0, 1] be a family of flows varying continuously
in λ (a homotopy between ϕ0 and ϕ1). Fix some compact set N and denote
Sλ := Inv(N, ϕλ). If N is an isolating neighborhood for all Sλ, then all h(Sλ, ϕλ)
coincide.
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This last property is very useful since it allows us to transform complicated
flows into homotopical simple ones which usually are way easier to study. The
typical use of the Conley index in the studies of concrete dynamical systems is
based on these two first properties. One asks if there is some invariant set inside
a region and then replace the original flow with a simpler one, where it is easier
to verify the existence of a non-empty invariant set in a relevant neighborhood.
Then, we can conclude that indeed there was an invariant set in the region we
were interested in.

For illustration purposes, we show how the Conley index indicates the exis-
tence of invariant sets in examples 3 and 4.

In the first example, we can see that the boundary of any interval [−a, a],
with a > 0, doesn’t intersect with invariant sets contained in [−a, a], since
ϕ(t,−a) < −a and ϕ(t, a) > a for all t > 0, which means the orbits of the
boundary points will leave [−a, a]. So N = [−a, a] is an isolating neighborhood
of some set, which could be empty.

We select the index pair (N,L), where

N = [−a, a]

L = {−a, a}

It should not be hard to convince yourself that this is an index pair. Now,
we take the quotient N/L, which is homeomorphic to the circle S1. Since S1 has
a non-trivial homotopy type, we conclude that N contains a non-empty isolated
invariant set.

The work is analogous in the second example, where we have a hyperbolic
point. This time, our index pair will be (N,L) with

N = [−a, a]× [−a, a]

L = ({−a} × [−a, a]) ∪ ({a} × [−a, a]).

In this case, the quotient N/L will give us a cylinder, which also doesn’t
have a trivial homotopy type. In general, this example can be generalized to
hyperbolic points with any number as the dimension of its unstable manifold.
In fact, we have the following theorem.

Theorem 10. Let x be a hyperbolic fixed point in the flow ϕ. If the unstable
manifold of x has dimension n, then

CHk({x}, ϕ) =

{
Z if k = n or k = 0

0 otherwise.
.

In other words, {x} has the homology Conley index equal to the homology of
the n-sphere. This theorem follows from a linearization of the dynamical system
where x is hyperbolic and the application of the procedure done previously in
two dimensions, with minor adaptations.
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Now we present a last result that helps us to understand the internal dy-
namics of an isolated invariant set. What it means is that inside an isolated
invariant set, there can be many interesting things going on. We could have
other invariant sets and orbits connecting them.

Example 11. For a concrete example, consider a dynamic system in the plane
with a fixed point at the origin and a periodic orbit which is a circle centered
around this point. All the other orbits flow directed to the center. The orbits
outside the circle approach it asymptotically while the ones inside it, approach
the central fixed point. This system is shown in the following portrait.

We shall observe that the region enclosed by the circle (including itself) is
an invariant set. Not only that, but it is an isolated invariant set: a disk of
greater radius is an admissible isolated neighborhood. We could look inside the
invariant disk and we will find out that it is composed of a union of three other
invariant sets: the circular periodic orbit, the center fixed point, and the orbits
that go from the periodic orbit to the fixed point.

We can go even further and check that both the fixed point and the periodic
orbit are isolated invariant sets. They are IISs connected by orbits that are
contained in the invariant disk. We start to notice that invariant sets can have
lifeful internal dynamics.

In this particular case, we have our invariant disk S being equal to the union
S = {x0}∪M ∪C(M,x0), where M is the circular periodic orbit and C(M,x0)
is the set of points in the connecting orbits from M to x0, that is, the points on
trajectories that start in M and go to x0 (asymptotically). Both {x0} and M
are IIS, so let us calculate the Conley index of them.

For the periodic orbit, will N1 can be an annulus that contains the orbit and
N2 the inner boundary of the annulus. The quotient N1/N2 is homeomorphic
to a disk and thus has trivial homology groups.

The story is not different for the fixed point. N1 can be a small disk centered
around x0 and N2 will be the empty set. Then, the quotient N1/N2 is again
homeomorphic to a disk and has trivial homology groups.
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What about the Conley index of the whole invariant disk? N1 can be a
bigger disk containing S and N2 will be empty again. So in this case, CH•(S) ∼=
CH•(x0)⊕ CH•(M).

We may ask if this is always true. Unfortunately (or fortunately) it is not
always true. But we know a sufficient condition for it to happen.

Theorem 12. Let S be an IIS such that

S =

n⋃
i=1

Mi

where each Mi is an IIS, then

CH•(S) =

n⊕
i=1

CH•(Mi).

At first glance, we could be sad about the failure of the other direction
of this theorem. But this failure actually comes with its own advantages. In
summary, we may have a couple of IISs and we want to know if there are orbits
connecting them. Take an IIS that contains all the previous isolated invariant
sets and compare the Conley indices. If they don’t match, we know for sure
that there exists connecting orbits between our IISs. But if the indices match,
we can not conclude anything, as the example 11 shows.

There are still many topics of the Conley index theory to cover. We did not
say a word about the index for discrete dynamical systems, which is slightly
more delicate since some of the basic theorems we used for defining the index
are not available.

Other interesting topics include how the Conley index can lead to homolog-
ical chains related to decompositions of isolated invariant sets. There is also a
strong relation between the Conley index and Morse theory, where the Conley
index can be used to prove, for example, the Poincaré-Hopf theorem. The Con-
ley index further expands or leads to other theories, like the L S -index and
Floer homology.
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